The aim was to assess the intensified dairy sheep farming systems of the Chios breed in Greece, establishing a typology that may properly describe and characterize them. The study included the total of the 66 farms of the Chios sheep breeders' cooperative Macedonia. Data were collected using a structured direct questionnaire for in-depth interviews, including questions properly selected to obtain a general description of farm characteristics and overall management practices. A multivariate statistical analysis was used on the data to obtain the most appropriate typology. Initially, principal component analysis was used to produce uncorrelated variables (principal components), which would be used for the consecutive cluster analysis. The number of clusters was decided using hierarchical cluster analysis, whereas, the farms were allocated in 4 clusters using k-means cluster analysis. The identified clusters were described and afterward compared using one-way ANOVA or a chi-squared test. The main differences were evident on land availability and use, facility and equipment availability and type, expansion rates, and application of preventive flock health programs. In general, cluster 1 included newly established, intensive, well-equipped, specialized farms and cluster 2 included well-established farms with balanced sheep and feed/crop production. In cluster 3 were assigned small flock farms focusing more on arable crops than on sheep farming with a tendency to evolve toward cluster 2, whereas cluster 4 included farms representing a rather conservative form of Chios sheep breeding with low/intermediate inputs and choosing not to focus on feed/crop production. In the studied set of farms, 4 different farmer attitudes were evident: 1) farming disrupts sheep breeding; feed should be purchased and economies of scale will decrease costs (mainly cluster 1), 2) only exercise/pasture land is necessary; at least part of the feed (pasture) must be home-grown to decrease costs (clusters 1 and 4), 3) providing pasture to sheep is essential; on-farm feed production decreases costs (mainly cluster 3), and 4) large-scale farming (feed production and cash crops) does not disrupt sheep breeding; all feed must be produced on-farm to decrease costs (mainly cluster 3). Conducting a profitability analysis among different clusters, exploring and discovering the most beneficial levels of intensified management and capital investment should now be considered.
The objectives of this study were to characterize the changes of body condition score (BCS), energy content (EC), cumulative effective energy balance (CEEB), and blood serum concentrations of glucose, β-hydroxybutyrate (BHBA), and nonesterified fatty acids (NEFA) across the first lactation of Holstein cows, and to estimate variance components for these traits. Four hundred ninety-seven cows kept on a commercial farm in Greece that had calved during 2005 and 2006 were used. Body condition score, estimated live weight, and blood metabolic traits were recorded weekly for the first 3 mo of lactation and monthly thereafter until the end of lactation. Body condition score and estimated live weight records were used to calculate EC and CEEB throughout the first lactation. Estimates of fixed curves and genetic parameters for each trait, by week of lactation, were obtained with the use of random regression models. The estimated fixed curves were indicative of changes in the metabolic process and energy balance of the cows. Significant genetic variance existed in all studied traits, and was particularly high during the first weeks of lactation (except for the genetic variance of CEEB, which was not significant at the beginning of lactation). Significant heritability estimates for BCS ranged from 0.34 to 0.79, for EC from 0.19 to 0.87, for CEEB from 0.58 to 0.93, for serum glucose from 0.12 to 0.39, for BHBA from 0.08 to 0.40, and for NEFA from 0.08 to 0.35. Genetic correlations between different weeks of lactation were near unity for adjacent weeks and decreased for weeks further apart, becoming practically zero for measurements taken more than 3 to 4 mo apart, especially with regard to blood metabolic traits. Significant heritability estimates were also obtained for BCS recorded before first calving. Results suggest that genetic evaluation and selection of dairy cows for earlylactation body energy and blood metabolic traits is possible.
Body condition score (BCS), energy content (EC), cumulative effective energy balance (CEEB), and blood serum concentrations of glucose, β-hydroxybutyrate (BHBA), and nonesterified fatty acids (NEFA) were measured throughout first lactation in 497 Holstein cows raised on a large commercial farm in northern Greece. All these traits are considered to be indicators of a cow's energy balance. An additional measure of BCS, EC, and blood serum glucose, BHBA, and NEFA concentrations were taken approximately 2 mo (61 ± 23 d) before first calving. During first lactation, first service conception rate, conception rate in the first 305 d of lactation, interval from calving to conception, number of inseminations per conception, incidence of metritis, and incidence of reproductive problems of these cows were recorded; interval between first and second calving, and second lactation first service conception rate were also recorded. Random regression models were used to calculate weekly animal breeding values for first lactation BCS, EC, CEEB, glucose, BHBA, and NEFA. Single trait animal models were used to calculate breeding values for these traits measured on pregnant heifers before calving. Reproductive records were then regressed on animal breeding values for these energy balance-related traits to derive estimates of their genetic correlations. Several significant estimates were obtained. In general, traits that are known to be positively correlated with energy balance (BCS, EC, CEEB, and glucose) were found to have a favorable genetic relationship with reproduction, meaning that increased levels of the former will lead to an enhancement of the latter. On the other hand, traits known to be negatively correlated with energy balance (BHBA and NEFA) were found to have an unfavorable genetic association with reproductive traits. Body condition score, BHBA, and NEFA recorded early in lactation, and glucose concentrations measured in pregnant heifers had the highest genetic correlation with future reproductive performance. Results suggest that genetic selection for body energy and blood metabolites could facilitate the genetic improvement of fertility and overall reproductive efficiency of dairy cows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.