Analysis of the draft genome sequence of the opportunistic pathogen Propionibacterium acnes type strain NCTC 737 (=ATCC 6919) revealed five genes with sequence identity to the co-haemolytic Christie-Atkins-Munch-Peterson (CAMP) factor of Streptococcus agalactiae. The predicted molecular masses for the expressed proteins ranged from 28 to 30 kDa. The genes were present in each of the three recently identified recA-based phylogenetic groupings of P. acnes (IA, IB and II), as assessed by PCR amplification. Conserved differences in CAMP factor gene sequences between these three groups were also consistent with their previous phylogenetic designations. All type IA, IB and II isolates were positive for the co-haemolytic reaction on sheep blood agar. Immunoblotting and silver staining of SDS-PAGE gels, however, revealed differential protein expression of CAMP factors amongst the different groups. Type IB and II isolates produced an abundance of CAMP factor 1, detectable by specific antibody labelling and silver staining of SDS-PAGE gels. In contrast, abundant CAMP factor production was lacking in type IA isolates, although larger amounts of CAMP factor 2 were detectable by immunoblotting compared with type II isolates. While the potential role of the abundant CAMP factor 1 in host colonization or virulence remains to be determined, it should be noted that the type strain of P. acnes used in much of the published literature is a type IA isolate and is, therefore, lacking in this attribute.
Stroke is one of the most complex diseases, with several subtypes, as well as secondary risk factors, such as hypertension, hyperlipidemia, and diabetes, which, in turn, have genetic and environmental risk factors of their own. Here, we report the results of a genomewide search for susceptibility genes for the common forms of stroke. We cross-matched a population-based list of patients with stroke in Iceland with an extensive computerized genealogy database clustering 476 patients with stroke within 179 extended pedigrees. Linkage to 5q12 was detected, and the LOD score at this locus meets the criteria for genomewide significance (multipoint allele-sharing LOD score of 4.40, P=3.9 x 10(-6)). A 20-cM region on 5q was physically and genetically mapped to obtain accurate marker order and intermarker distances. This locus on 5q12, which we have designated as "STRK1," does not correspond to known susceptibility loci for stroke or for its risk factors and represents the first mapping of a locus for common stroke.
Patients with prior poliomyelitis may experience muscle function deterioration decades after onset of disease. The present study is aimed at describing electromyographic and morphometric evidence of muscular compensation and of on-going muscular instability. Ten subjects 42-62 years of age with onset of polio 25-52 years earlier were studied with macro EMG, single-fiber EMG (SFEMG), muscle strength measurement, and morphometrical analysis of muscle biopsies from the vastus lateralis muscle. SFEMG revealed increased fiber density (FD) and large macro-MUP potentials indicating pronounced reinnervation as compensation to loss of motor neurons. From electrophysiological data of motor unit size, morphometric measures of fiber size, and muscle strength data, the minimal degree of motor neuron loss was estimated to be greater than 70%.
The advent of high-throughput multi-omics technologies has underpinned the expansion in lung microbiome research, increasing our understanding of the nature, complexity and significance of the polymicrobial communities harbored by people with CF (PWCF). Having established that structurally complex microbial communities exist within the airways, the focus of recent research has now widened to investigating the function and dynamics of the resident microbiota during disease as well as in health. With further refinement, multi-omics approaches present the opportunity to untangle the complex interplay between microbe-microbe and microbe-host interactions in the lung and the relationship with respiratory disease progression, offering invaluable opportunities to discover new therapeutic approaches for our management of airway infection in CF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.