The electronic states of a singly ionized on-axis double-donor complex (D2+) confined in two identical vertically coupled, axially symmetrical quantum dots in a threading magnetic field are calculated. The solutions of the Schrödinger equation are obtained by a variational separation of variables in the adiabatic limit. Numerical results are shown for bonding and antibonding lowest-lying artificial molecule states corresponding to different quantum dot morphologies, dimensions, separation between them, thicknesses of the wetting layers, and magnetic field strength.
Ab-initio density functional theory calculations are carried out to investigate the role of zirconium (Zr) impurity atoms during AlN(0001) surface growth. Adsorption and diffusion of Zr atoms on AlN(0001)-2 Â 2 surface is examined and it is shown that Zr atoms preferentially adsorb at the T4 sites at low and high coverage (from 1/4 up to 1 monolayer). We found that the Zr adatom diffusion energy barrier between the T4 and H3 sites is around $0.4 eV, which is an indication of a significant Zr adatom diffusion on this surface. In addition, calculating the relative surface energy of several configurations and various Zr concentrations, we constructed a phase diagram showing the energetically most stable surfaces as a function of the Zr and Al chemical potentials. Based on these results, we find that incorporation of Zr adatoms in the Al-substitutional site is energetically more favorable compared with the adsorption on the top layers. This effect leads to the formation of a nonreactive interfacial ZrN(111) layer on the AlN(0001) surface, which can offer a good interfacial combination between AlN substrate and other metal contacts, i.e. zirconium.
We consider a model of hydrogen-like artificial molecule formed by two vertically coupled quantum dots in the shape of axially symmetrical thin layers with on-axis single donor impurity in each of them and with the magnetic field directed along the symmetry axis. We present numerical results for energies of some low-lying levels as functions of the magnetic field applied along the symmetry axis for different quantum dot heights, radii, and separations between them. The evolution of the Aharonov-Bohm oscillations of the energy levels with the increase of the separation between dots is analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.