Quantitative structure-property relationships (QSPRs) for estimating aqueous solubility of organic compounds at 25°C were developed based on a fuzzy ARTMAP and a back-propagation neural networks using a heterogeneous set of 515 organic compounds. A set of molecular descriptors, developed from PM3 semiempirical MO-theory and topological descriptors (first-, second-, third-, and fourth-order molecular connectivity indices), were used as input parameters to the neural networks. Quantum chemical input descriptors included average polarizability, dipole moment, resonance energy, exchange energy, electronnuclear attraction energy, and nuclear-nuclear (core-core) repulsion energy. The fuzzy ARTMAP/QSPR correlated aqueous solubility (S, mol/L) for a range of -11.62 to 4.31 logS with average absolute errors of 0.02 and 0.14 logS units for the overall and validation data sets, respectively. The optimal 11-13-1 backpropagation/QSPR model was less accurate, for the same solubility range, and exhibited larger average absolute errors of 0.29 and 0.28 logS units for the overall and validation sets, respectively. The fuzzy ARTMAP-based QSPR approach was shown to be superior to other back-propagation and multiple linear regression/QSPR models for aqueous solubility of organic compounds.
Quantitative structural property relations (QSPRs) for boiling points of aliphatic hydrocarbons were derived using a back-propagation neural network and a modified Fuzzy ARTMAP architecture. With the backpropagation model, the selected molecular descriptors were capable of distinguishing between diastereomers. The QSPRs were obtained from four valance molecular connectivity indices ( 1 v , 2 v , 3 v , 4 v ), a second-order Kappa shape index ( 2 κ), dipole moment, and molecular weight. The inclusion of dipole moment proved to be particularly useful for distinguishing between cis and trans isomers. A back-propagation 7-4-1 architecture predicted boiling points for the test, validation, and overall data sets of alkanes with average absolute errors of 0.37% (1.65 K), 0.42% (1.73 K), and 0.37% (1.54 K), respectively. The error for the test and overall data sets decreased to 0.19% (0.81 K) and 0.31% (1.30 K), respectively, using the modified Fuzzy ARTMAP network. A back-propagation alkene model, with a 7-10-1 architecture, yielded predictions with average absolute errors for the test, validation, and overall data sets of 1.96% (6.79 K), 1.83% (6.45 K), and 1.25% (4.42 K), respectively. Fuzzy ARTMAP reduced the errors for the test and overall data sets to 0.19% (0.73 K) and 0.25% (0.95 K), respectively. The back-propagation composite model for aliphatic hydrocarbons, with a 7-9-1 architecture, yielded boiling points with average absolute errors for the test, validation, and overall set of 1.74% (6.09 K), 1.25% (4.68 K), and 1.37% (4.85 K), respectively. The error for the test and overall data sets using the Fuzzy ARTMAP composite model decreased to 0.84% (1.15 K) and 0.35% (1.35 K), respectively. Performance of the QSPRs, developed from a simple set of molecular descriptors, displayed accuracy well within the range of expected experimental errors and of better accuracy than other regression analysis and neural network-based boiling points QSPRs previously reported in the literature.
Quantitative structure-property relationships (QSPRs) for estimating a dimensionless Henry's Law constant of organic compounds at 25°C were developed based on a fuzzy ARTMAP and back-propagation neural networks using a heterogeneous set of 495 organic compounds. A set of molecular descriptors developed from PM3 semiempirical MO-theory and topological descriptors (second-order molecular connectivity index) were used as input parameters to the neural networks. Quantum chemical input descriptors included average molecular polarizability, dipole moments (total point charge, total hybridization, and total sum), ionization potential, and heat of formation. The fuzzy ARTMAP/QSPR correlated Henry's Law constant for -6.72 e logH e 2.87 with average absolute errors of 0.03 and 0.13 logH units for the overall data and the test set, respectively. The optimal 7-17-1 back-propagation/QSPR model was less accurate and exhibited larger average absolute errors of 0.28 and 0.27 logH units for the validation (recall) and test sets, respectively. The fuzzy ARTMAP-based QSPR was superior to the back-propagation and multiple linear regression/ QSPR models for Henry's Law constant of organic compounds.
The amount and nature of carbon deposits on platinum catalysts supported on a mixture of alumina-β-zeolite, non neutralized and neutralized with cesium, were investigated and compared with those of a commercial catalyst (Pt/Al 2 O 3 ). The catalysts were deactivated in the methylcyclopentane reaction. Coke characterization was performed by elemental analysis, temperatureprogrammed oxidation (TPO), Fourier transform infrared (FTIR), and 13 C (CP/MAS) NMR. The significant difference between Pt/Al 2 O 3 and Pt supported on a mixture of γ-alumina and β-zeolite is the nature of the carbon deposits. Elemental analysis, TPO, FTIR, and 13 C (CP/MAS) NMR pointed out different features of the deposits. The zeolitic catalyst neutralized by Cs presented similar amounts of carbon residues but was the most deactivated. The results point out acid sites with different responses to carbonaceous residues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.