Polysomic inheritance frequently results in the simultaneous occurrence of several microsatellite DNA alleles on a single locus. The MAC-PR (microsatellite DNA allele counting-peak ratios) method was recently developed for the analysis of polyploid plants and makes use of the quantitative values for microsatellite allele peak areas. To date, this approach has only been used in plants with known genetic relationships. We report here the application of MAC-PR for the first time to random samples of unknown pedigrees. We analysed six microsatellite loci using a set of tetraploid ornamental rose ( Rosa x hybrida L.) varieties. For each locus, all alleles were analysed in pairwise combinations in order to determine their copy number in the individual samples. This was accomplished by calculating the ratios between the peak areas for two alleles in all of the samples where these two alleles occurred together. The allele peak ratios observed were plotted in a histogram, and those histograms that produced at least two well-separated groups were selected for further analysis. Mean allelic peak ratio values for these groups were compared to the relationships expected between alleles in hypothetical configurations of the locus investigated. Using this approach, we were able to assign precise allelic configurations (the actual genotype) to almost all of the varieties analysed for five of the six loci investigated. MAC-PR also appears to be a very effective tool for detecting 'null' alleles in polyploid species.
In this study a DNA fingerprinting protocol was developed for the identification of rose varieties based on the variability of microsatellites. Microsatellites were isolated from Rosa hybrida L. using enriched small insert libraries. In total 24 polymorphic sequenced tagged microsatellite site (STMS) markers with easily scorable allele profiles, from six different linkage groups, were used to characterize 46 Hybrid Tea varieties and 30 rootstock varieties belonging to different species (Rosa canina L., Rosa indica Thory., Rosa chinensis Jacq., Rosa rubiginosa L., and Rosa rubrifolia glauca Pour.). Clones and known flower color mutants were identified as being identical, all other varieties were differentiated by a unique pattern with as few as three STMS markers. The high discriminating power of the loci suggests that a selection of the most-robust STMS markers may be able to differentiate any two varieties within rootstocks or Hybrid Teas except for mutants. The selected STMS markers will be useful as a tool for reference collection management, for assessing essential derivation of varieties and illegal propagation.
SUMMARYIt has long been recognised that polyploid species do not always neatly fall into the categories of autoor allopolyploid, leading to the term 'segmental allopolyploid' to describe everything in between. The meiotic behaviour of such intermediate species is not fully understood, nor is there consensus as to how to model their inheritance patterns. In this study we used a tetraploid cut rose (Rosa hybrida) population, genotyped using the 68K WagRhSNP array, to construct an ultra-high-density linkage map of all homologous chromosomes using methods previously developed for autotetraploids. Using the predicted bivalent configurations in this population we quantified differences in pairing behaviour among and along homologous chromosomes, leading us to correct our estimates of recombination frequency to account for this behaviour. This resulted in the re-mapping of 25 695 SNP markers across all homologues of the seven rose chromosomes, tailored to the pairing behaviour of each chromosome in each parent. We confirmed the inferred differences in pairing behaviour among chromosomes by examining repulsionphase linkage estimates, which also carry information about preferential pairing and recombination. Currently, the closest sequenced relative to rose is Fragaria vesca. Aligning the integrated ultra-dense rose map with the strawberry genome sequence provided a detailed picture of the synteny, confirming overall co-linearity but also revealing new genomic rearrangements. Our results suggest that pairing affinities may vary along chromosome arms, which broadens our current understanding of segmental allopolyploidy.
According to previous cytological evidence, the hemisexual dog-rose species, Rosa sect. Caninae, transmit only seven chromosomes (derived from seven bivalents) through their pollen grains, whereas egg cells contain 21, 28 or 35 chromosomes (derived from seven bivalents and 14, 21 or 28 univalents) depending on ploidy level. Two sets of reciprocal pairwise interspecific crosses involving the pentaploid species pair R. dumalis and R. rubiginosa, and the pentaploid/tetraploid species pair R. sherardii and R. villosa, were analysed for 13 and 12 microsatellite DNA loci, respectively. Single loci were represented by a maximum of three simultaneously occurring alleles in R. villosa, and four alleles in the other three parental plants. In the experimentally derived offspring, the theoretical maximum of five alleles was found for only one locus in the pentaploid progenies. Microsatellite DNA allele composition was identical with that of the maternal parent in 10 offspring plants, which were probably derived through apomixis. Almost all microsatellite DNA alleles were shared with the maternal parent also in the remaining offspring, but 1-4 alleles shared only with the paternal parent, indicating sexual seed formation. Analysis of quantitative peak differences allowed a tentative estimation of allelic configuration in the individual plants, and suggested that bivalent formation preferentially takes place between chromosomes that consistently share the same microsatellite alleles and therefore appear to be highly homologous. Moreover, alleles that were shared between the species in each cross combination comparatively often appear to reside on the bivalent-forming chromosomes, whereas species-specific alleles instead occur comparatively often on the univalent-forming chromosomes and are therefore inherited through the maternal parent only. Recombination then takes place between very similar genomes also in interspecific crosses, resulting in a reproduction system that is essentially a mixture between apomixis and selfing.
In order to develop a versatile and large SNP array for rose, we set out to mine ESTs from diverse sets of rose germplasm. For this RNA-Seq libraries containing about 700 million reads were generated from tetraploid cut and garden roses using Illumina paired-end sequencing, and from diploid Rosa multiflora using 454 sequencing. Separate de novo assemblies were performed in order to identify single nucleotide polymorphisms (SNPs) within and between rose varieties. SNPs among tetraploid roses were selected for constructing a genotyping array that can be employed for genetic mapping and marker-trait association discovery in breeding programs based on tetraploid germplasm, both from cut roses and from garden roses. In total 68,893 SNPs were included on the WagRhSNP Axiom array. Next, an orthology-guided assembly was performed for the construction of a non-redundant rose transcriptome database. A total of 21,740 transcripts had significant hits with orthologous genes in the strawberry (Fragaria vesca L.) genome. Of these 13,390 appeared to contain the full-length coding regions. This newly established transcriptome resource adds considerably to the currently available sequence resources for the Rosaceae family in general and the genus Rosa in particular.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.