In uterine smooth muscle, the effects of watermelon and its citrulline content are unknown. The aims of this study were therefore, to determine the effects of watermelon extract and citrulline on the myometrium and to investigate their mechanisms of action. The effects of extracts of watermelon flesh and rind and L-citrulline (64 μmol/L) were evaluated on 3 types of contractile activity; spontaneous, those elicited by potassium chloride (KCl) depolarization, or oxytocin (10 nmol/L) application in isolated rat uterus. Inhibitors of nitric oxide (NO) and its mechanisms of action, N ω-Nitro-L-arginine methyl ester hydrochloride (L-NAME, 100 μmol/L), LY83583 (1 μmol/L), and tetraethylamonium chloride (5 mmol/L), as well as Ca signaling pathways, were determined. Both flesh and rind extracts significantly decreased the force produced by all 3 mechanisms, in a dose-dependent manner. The extracts could also significantly decrease the force under conditions of sustained high Ca levels (depolarization and agonist) and when the force was produced only by sarcoplasmic reticulum (SR) Ca release. L-citrulline produced the same effects on force as watermelon extracts. With submaximal doses of extract, the additive effects of L-citrulline were found. The inhibitory effects of extracts and L-citrulline were reversed upon the addition of NO inhibitors, and pretreatment of tissues with these inhibitors prevented the actions of both extracts and L-citrulline. Thus, these data show that watermelon and citrulline are potent tocolytics, decreasing the force produced by calcium entry and SR release and arising by different pathways, including oxytocin stimulation. Their major mechanism is to stimulate the NO-cyclic guanosine monophosphate (cGMP) relaxant pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.