p63 mutations have been associated with EEC syndrome (ectrodactyly, ectodermal dysplasia, and cleft lip/palate), as well as with nonsyndromic split hand-split foot malformation (SHFM). We performed p63 mutation analysis in a sample of 43 individuals and families affected with EEC syndrome, in 35 individuals affected with SHFM, and in three families with the EEC-like condition limb-mammary syndrome (LMS), which is characterized by ectrodactyly, cleft palate, and mammary-gland abnormalities. The results differed for these three conditions. p63 gene mutations were detected in almost all (40/43) individuals affected with EEC syndrome. Apart from a frameshift mutation in exon 13, all other EEC mutations were missense, predominantly involving codons 204, 227, 279, 280, and 304. In contrast, p63 mutations were detected in only a small proportion (4/35) of patients with isolated SHFM. p63 mutations in SHFM included three novel mutations: a missense mutation (K193E), a nonsense mutation (Q634X), and a mutation in the 3' splice site for exon 5. The fourth SHFM mutation (R280H) in this series was also found in a patient with classical EEC syndrome, suggesting partial overlap between the EEC and SHFM mutational spectra. The original family with LMS (van Bokhoven et al. 1999) had no detectable p63 mutation, although it clearly localizes to the p63 locus in 3q27. In two other small kindreds affected with LMS, frameshift mutations were detected in exons 13 and 14, respectively. The combined data show that p63 is the major gene for EEC syndrome, and that it makes a modest contribution to SHFM. There appears to be a genotype-phenotype correlation, in that there is a specific pattern of missense mutations in EEC syndrome that are not generally found in SHFM or LMS.
A fourth human UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, designated GalNAc-T4, was cloned and expressed. The genomic organization of GalNAc-T4 is distinct from GalNAc-T1, -T2, and -T3, which contain multiple coding exons, in that the coding region is contained in a single exon. GalNAc-T4 was placed at human chromosome 12q21.3-q22 by in situ hybridization and linkage analysis. GalNAc-T4 expressed in Sf9 cells or in a stably transfected Chinese hamster ovary cell line exhibited a unique acceptor substrate specificity. GalNAc-T4 transferred GalNAc to two sites in the MUC1 tandem repeat sequence (Ser in GVTSA and Thr in PDTR) using a 24-mer glycopeptide with GalNAc residues attached at sites utilized by GalNAc-T1, -T2, and -T3 (TAPPAHGVTSAPDTRPAPGSTAPPA, GalNAc attachment sites underlined). Furthermore, GalNAc-T4 showed the best kinetic properties with an O-glycosylation site in the P-selectin glycoprotein ligand-1 molecule. Northern analysis of human organs revealed a wide expression pattern. Immunohistology with a monoclonal antibody showed the expected Golgi-like localization in salivary glands. A single base polymorphism, G1516A (Val to Ile), was identified (allele frequency 34%). The function of GalNAc-T4 complements other GalNAc-transferases in O-glycosylation of MUC1 showing that glycosylation of MUC1 is a highly ordered process and changes in the repertoire or topology of GalNActransferases will result in altered pattern of O-glycan attachments.
The UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, designated GalNAc-T3, exhibits unique functions. Specific acceptor substrates are used by GalNAc-T3 and not by other GalNAc-transferases. The expression pattern of GalNAc-T3 is restricted, and loss of expression is a characteristic feature of poorly differentiated pancreatic tumors. In the present study, a sixth human UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, designated GalNAc-T6, with high similarity to GalNAc-T3, was characterized. GalNAc-T6 exhibited high sequence similarity to GalNAc-T3 throughout the coding region, in contrast to the limited similarity that exists between homologous glycosyltransferase genes, which is usually restricted to the putative catalytic domain. The genomic organizations of GALNT3 and GALNT6 are identical with the coding regions placed in 10 exons, but the genes are localized differently at 2q31 and 12q13, respectively. Acceptor substrate specificities of GalNAc-T3 and -T6 were similar and different from other GalNAc-transferases. Northern analysis revealed distinct expression patterns, which were confirmed by immunocytology using monoclonal antibodies. In contrast to GalNAc-T3, GalNAc-T6 was expressed in WI38 fibroblast cells, indicating that GalNAc-T6 represents a candidate for synthesis of oncofetal fibronectin. The results demonstrate the existence of genetic redundancy of a polypeptide GalNAc-transferase that does not provide full functional redundancy.
Telomeric chromosome rearrangements may cause mental retardation, congenital anomalies, and miscarriages. Automated detection of subtle deletions or duplications involving telomeres is essential for high-throughput diagnosis, but impossible when conventional cytogenetic methods are used. Array-based comparative genomic hybridization (CGH) allows high-resolution screening of copy number abnormalities by hybridizing differentially labeled test and reference genomes to arrays of robotically spotted clones. To assess the applicability of this technique in the diagnosis of (sub)telomeric imbalances, we here describe a blinded study, in which DNA from 20 patients with known cytogenetic abnormalities involving one or more telomeres was hybridized to an array containing a validated set of human-chromosome-specific (sub)telomere probes. Single-copy-number gains and losses were accurately detected on these arrays, and an excellent concordance between the original cytogenetic diagnosis and the array-based CGH diagnosis was obtained by use of a single hybridization. In addition to the previously identified cytogenetic changes, array-based CGH revealed additional telomere rearrangements in 3 of the 20 patients studied. The robustness and simplicity of this array-based telomere copy-number screening make it highly suited for introduction into the clinic as a rapid and sensitive automated diagnostic procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.