We document palynofloral trends through the Triassic in the Germanic and Alpine facies with an emphasis on diversity trends and possibly related palaeoenvironmental changes. As a first order approximation of palynofloral diversity, we used the range through method of the software package PAST based on a range chart compiled from several Triassic palynological studies and reviews. Our analysis suggests that during the entire Triassic the diversity of plants producing spores was largely controlled by the availability of water, while diversity among gymnosperms was also affected by other environmental and biotic factors. In general, palynofloral diversity declines by some 50% between the early Carnian and the Norian, mainly as a result of a decrease in the number of pollen species. This is the second most severe loss in pollen species after the Permian–Triassic biotic crisis. In comparison to the marked palynofloral turnover at the Permian–Triassic transition and the end-Carnian decrease in palynofloral diversity, the end-Triassic biotic crisis appears to have little affected palynofloral species diversity in Europe. A study of the palynostratigraphy of NW Europe recognizes nine zones (and nine subzones) that encompass the Triassic, most of which have their boundaries based on the first occurrences of marker species. The palynostratigraphic zones and subzones in Europe are correlated to the marine Triassic stages based on various data, including numerous palynological records in marine Alpine Triassic strata.
The Amsterdam glacial basin was a major sedimentary sink from late Saalian until late Eemian (Picea zone, E6) times. The basin’s exemplary record makes it a potential reference area for the last interglacial stage. The cored Amsterdam-Terminal borehole was drilled in 1997 to provide a record throughout the Eemian interglacial. Integrated facies analysis has resulted in a detailed reconstruction of the sedimentary history.After the Saalian ice mass had disappeared from the area, a large, deep lake had come into being, fed by the Rhine river. At the end of the glacial, the lake became smaller because it was cut off from the river-water supply, and eventually only a number of shallow pools remained in the Amsterdam basin. During the early Eemian (Betula zone, El), a seepage lake existed at the site. The lake deepened under the influence of a steadily rising sea level and finally evolved into a silled lagoon (late Quercus zone, E3). Initially, the lagoon water had fairly stable stratification, but as the sea level continued to rise the sill lost its significance, the lagoon becoming well mixed by the middle of the Corylus/Taxus zone (E4b). The phase of free exchange with the open sea ended in the early Carpinus zone (E5), when barriers developed in the sill area causing the lagoon to become stratified again. During the Late Eemian (late E5), a more dynamic system developed. The sandy barriers that had obstructed exchange with the open sea were no longer effective, and a tidally-influenced coastal lagoon formed.The Eemian sedimentary history shown in the Amsterdam-Terminal borehole is intimately connected with the sea-level history. Because the site includes both a high-resolution pollen signal and a record of sea-level change, it has potential for correlation on various scales. Palaeomagnetic results show that the sediments predate the Blake Event, which confirms that this reversal excursion is relatively young. The U/Th age of the uppermost part of the Eemian sequence is 118.2±6.3 ka.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.