A. Kilias 7 G. Falalakis 7 D. MountrakisCretaceous-Tertiary structures and kinematics of the Serbomacedonian metamorphic rocks and their relation to the exhumation of the Hellenic hinterland (Macedonia, Greece) Abstract The kinematic pattern and associated metamorphism of the predominant ductile deformation and the subsequent deformational stages of the Serbomacedonian metamorphic rocks and granitoids are presented in terms of peri-Tethyan tectonics. A systematic record of structural and metamorphic data gives evidence of a main top-to-ENE to ESE ductile flow of Cretaceous age (120-90 Ma) associated with a crustal stretching and unroofing. A subordinate WSW to WNW antithetic sense of movement of the tectonic top is observed in places. The associated metamorphic conditions are estimated at 4.5-7.5 kbar and 510-580 7C. During Eocene to Miocene times these fabrics were successively deformed by low-angle extensional D e ductile shear zones with top-to-NE and SW sense of movement and brittle shear zones of similar kinematic pattern, suggesting a transition from ductile to brittle deformation. D e deformation was accompanied during its later stages by NW/SE-directed shortening. We also discuss the relation of this Cretaceous-Tertiary deformation of the Serbomacedonian metamorphic rocks with the Eocene to Miocene ductile, top-to-southwestward crustal shear of the adjacent Rhodope crystalline rocks. We regard the Serbomacedonian and the Rhodope metamorphic rocks to represent related metamorphic provinces, the most recent exhumation and cooling history of which is bracketed between the Eocene and Neogene.
Developing a methodology for water balance estimation is a significant challenge, especially in areas with little or no gauging. This is because direct measurements of all the water balance components are not feasible. To overcome this issue, we propose a simple methodology based on the predefined empirical relationship between remotely sensed evapotranspiration (ET), i.e. Moderate Resolution Imaging Spectroradiometer (MODIS) ET and groundwater recharge (GR), and readily available precipitation data at the monthly time step. The developed methodology was applied in seven catchments in NE Greece using time series of precipitation and remotely sensed ET from 2009 to 2019. The potential of the proposed method to accurately estimate the water balance was assessed by the comparison of the individual water balance components against modeled values. Three performance metrics were examined and indicated that the methodology produces a satisfactory outcome. Our results indicated mean ET accounting for approximately 54% of precipitation, mean GR of 24% and mean surface runoff approximately 22% of precipitation in the study area. The proposed approach was implemented using freely available remotely sensed products and the free R software for statistical computing and graphics, offering thus a convenient and inexpensive alternative for water balance estimation, even for basins with limited data availability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.