Magnetic storage based on racetrack memory is very promising for the design of ultra-dense, low-cost and low-power storage technology. Information can be coded in a magnetic region between two domain walls or, as predicted recently, in topological magnetic objects known as skyrmions. Here, we show the technological advantages and limitations of using Bloch and Néel skyrmions manipulated by spin current generated within the ferromagnet or via the spin-Hall effect arising from a non-magnetic heavy metal underlayer. We found that the Néel skyrmion moved by the spin-Hall effect is a very promising strategy for technological implementation of the next generation of skyrmion racetrack memories (zero field, high thermal stability, and ultra-dense storage). We employed micromagnetics reinforced with an analytical formulation of skyrmion dynamics that we developed from the Thiele equation. We identified that the excitation, at high currents, of a breathing mode of the skyrmion limits the maximal velocity of the memory.
Spin-based electronics has evolved into a major field of research that broadly encompasses different classes of materials, magnetic systems, and devices. This review describes recent advances in spintronics that have the potential to impact key areas of information technology and microelectronics. We identify four main axes of research: nonvolatile memories, magnetic sensors, microwave devices, and beyond-CMOS logic. We discuss state-of-the-art developments in these areas as well as opportunities and challenges that will have to be met, both at the device and system level, in order to integrate novel spintronic functionalities and materials in mainstream microelectronic platforms.Conventional information processing and communication devices work by controlling the flow of electric charges in integrated circuits. Such circuits are based on nonmagnetic semiconductors, in Technologies based on GMR and MTJ devices are now firmly established and compatible with CMOS fab processes. Yet, in order to meet the increasing demand for high-speed, high-density, and low power electronic components, the design of materials, processes, and spintronic circuits needs to be continuously innovated. Further, recent breakthroughs in basic research brought forward novel phenomena that allow for the generation and interconversion of charge, spin, heat, and optical signals.Many of these phenomena are based on non-equilibrium spin-orbit interaction effects, such as the spin Hall and Rashba-Edelstein effects 6,8,23 or their thermal 24 and optical 25,26 analogues. Spin-orbit torques (SOT), for example, can excite any type of magnetic materials, ranging from metals to semiconductors and insulators, in both ferromagnetic and antiferromagnetic configurations 6 . This versatility allows for the switching of single layer ferromagnets, ferrimagnets, and antiferromagnets, as well as for the excitation of spin waves and auto-oscillations in both planar and vertical device geometries 10,11 . Charge-spin conversion effects open novel pathways for information processing using Boolean logic, as well as promising avenues for implementing unconventional neuromorphic 27,28,29 and probabilistic 30 computing schemes. Finally, spintronic devices cover a broad bandwidth ranging from DC to THz 31,32 , leading to exciting opportunities for the on-chip generation and detection of high frequency signals.
In this topical review, we will discuss recent advances in the field of skyrmionics (fundamental and applied aspects) mainly focusing on skyrmions that can be realized in thin film structures where an ultrathin ferromagnetic layer (<1 nm) is coupled to materials with large spin-orbit coupling. We review the basic topological nature of the skyrmion spin structure that can entail a stabilization due to the chiral exchange interaction present in many multilayer systems with structural inversion asymmetry. The static spin structures and the dynamics of the skyrmions are also discussed. In particular, we show that skyrmions can be displaced with high reliability and efficiency as needed for the use in devices. We discuss major possible applications, such as memory, microwave oscillators and logic, and combinations of these, making skyrmions very promising candidates for future low power IT devices.
Through detailed experimental studies of the angular dependence of spin wave excitations in nanocontact-based spin-torque oscillators, we demonstrate that two distinct spin wave modes can be excited, with different frequency, threshold currents, and frequency tunability. Using analytical theory and micromagnetic simulations we identify one mode as an exchange-dominated propagating spin wave, and the other as a self-localized nonlinear spin wave bullet. Wavelet-based analysis of the simulations indicates that the apparent simultaneous excitation of both modes results from rapid mode hopping induced by the Oersted field.
The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive currents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size. Here, we report microwave measurements on STNOs built with MgO-based magnetic tunnel junctions having a planar polarizer and a perpendicular free layer, where microwave emission with large output power, excited at ultralow current densities, and in the absence of any bias magnetic fields is observed. The measured critical current density is over one order of magnitude smaller than previously reported. These results suggest the possibility of improved integration of STNOs with complementary metal-oxide-semiconductor technology, and could represent a new route for the development of the next-generation of on-chip oscillators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.