This paper summarizes the main characteristics of the RCP8.5 scenario. The RCP8.5 combines assumptions about high population and relatively slow income growth with modest rates of technological change and energy intensity improvements, leading in the long term to high energy demand and GHG emissions in absence of climate change policies. Compared to the total set of Representative Concentration Pathways (RCPs), RCP8.5 thus corresponds to the pathway with the highest greenhouse gas emissions. Using the IIASA Integrated Assessment Framework and the MESSAGE model for the development of the RCP8.5, we focus in this paper on two important extensions compared to earlier scenarios: 1) the development of spatially explicit air pollution projections, and 2) enhancements in the land-use and land-cover change projections. In addition, we explore scenario variants that use RCP8.5 as a baseline, and assume different degrees of greenhouse gas mitigation policies to reduce radiative forcing. Based on our modeling framework, we find it technically possible to limit forcing from RCP8.5 to lower levels comparable to the other RCPs (2.6 to 6 W/m 2 ). Our scenario analysis further indicates that climate policyinduced changes of global energy supply and demand may lead to significant co-benefits for other policy priorities, such as local air pollution.
The impact of land use on the global carbon cycle and climate is assessed. The Bern carbon cycle‐climate model was used with land use maps from HYDE3.0 for 1700 to 2000 A.D. and from post‐SRES scenarios for this century. Cropland and pasture expansion each cause about half of the simulated net carbon emissions of 188 Gt C over the industrial period and 1.1 Gt C yr−1 in the 1990s, implying a residual terrestrial sink of 113 Gt C and of 1.8 Gt C yr−1, respectively. Direct CO2 emissions due to land conversion as simulated in book‐keeping models dominate carbon fluxes due to land use in the past. They are, however, mitigated by 25% through the feedback of increased atmospheric CO2 stimulating uptake. CO2 stimulated sinks are largely lost when natural lands are converted. Past land use change has eliminated potential future carbon sinks equivalent to emissions of 80–150 Gt C over this century. They represent a commitment of past land use change, which accounts for 70% of the future land use flux in the scenarios considered. Pre‐industrial land use emissions are estimated to 45 Gt C at most, implying a maximum change in Holocene atmospheric CO2 of 3 ppm. This is not compatible with the hypothesis that early anthropogenic CO2 emissions prevented a new glacial period.
Abstract. To sustain growing food demand and increasing standard of living, global water use increased by nearly 6 times during the last 100 years and continues to grow. As water demands get closer and closer to the water availability in many regions, each drop of water becomes increasingly valuable and water must be managed more efficiently and intensively. However, soaring water use worsens water scarcity condition already prevalent in semi-arid and arid regions, increasing uncertainty for sustainable food production and economic development. Planning for future development and investments requires that we prepare water projections for the future. However, estimations are complicated because the future of world's waters will be influenced by a combination of environmental, social, economic, and political factors, and there is only limited knowledge and data available about freshwater resources and how they are being used. The Water Futures and Solutions initiative (WFaS) coordinates its work with other on-going scenario efforts for the sake of establishing a consistent set of new global water scenarios based on the Shared Socioeconomic Pathways (SSPs) and the Representative Concentration Pathways (RCPs). The WFaS "fast-track" assessment uses three global water models, namely H08, PCR-GLOBWB, and WaterGAP. This study assesses the state of the art for estimating and projecting water use regionally and globally in a consistent manner. It provides an overview of different approaches, the uncertainty, strengths and weaknesses of the various estimation methods, types of management and policy decisions for which the current estimation methods are useful. We also discuss additional information most needed to be able to improve water use estimates and be able to assess a greater range of management options across the water-energy-climate nexus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.