We report how a setup consisting of three gratings yields quantitative two- and three-dimensional images depicting the quantum-mechanical phase shifts of neutron de Broglie wave packets induced by the influence of macroscopic objects. Since our approach requires only a little spatial and chromatic coherence it provides a more than 2 orders of magnitude higher efficiency than existing techniques. This dramatically reduces the required measurement time for computed phase tomography and opens up the way for three-dimensional investigations of previously inaccessible quantum-mechanical phase interactions of neutrons with matter.
Here we introduce a novel neutron imaging method, which is based on the effect that the spatial coherence of the neutron wave front can be changed through small-angle scattering of neutrons at magnetic domain walls in the specimen. We show that the technique can be used to visualize internal bulk magnetic domain structures that are difficult to access by other techniques. The method is transferable to a wide variety of specimens, extendable to three dimensions, and well suited for investigating materials under the influence of external parameters, as, e.g., external magnetic field, temperature, or pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.