We propose a new family of continuous distributions called the odd generalized exponential family, whose hazard rate could be increasing, decreasing, J, reversed-J, bathtub and upside-down bathtub. It includes as a special case the widely known exponentiated-Weibull distribution. We present and discuss three special models in the family. Its density function can be expressed as a mixture of exponentiated densities based on the same baseline distribution. We derive explicit expressions for the ordinary and incomplete moments, quantile and generating functions, Bonferroni and Lorenz curves, Shannon and Rényi entropies and order statistics. For the first time, we obtain the generating function of the Fréchet distribution. Two useful characterizations of the family are also proposed. The parameters of the new family are estimated by the method of maximum likelihood. Its usefulness is illustrated by means of two real lifetime data sets.
Statistical analysis of lifetime data is an important topic in reliability engineering, biomedical and social sciences and others. We introduce a new generator based on the Weibull random variable called the new Weibull-G family. We study some of its mathematical properties. Its density function can be symmetrical, left-skewed, right-skewed, bathtub and reversed-J shaped, and has increasing, decreasing, bathtub, upside-down bathtub, J, reversed-J and S shaped hazard rates. Some special models are presented. We obtain explicit expressions for the ordinary and incomplete moments, quantile and generating functions, Rényi entropy, order statistics and reliability. Three useful characterizations based on truncated moments are also proposed for the new family. The method of maximum likelihood is used to estimate the model parameters. We illustrate the importance of the family by means of two applications to real data sets.
In this paper, we introduce a new class of distributions called the Burr X family. Some of its mathematical and structural properties are derived. The maximum likelihood is used for estimating the model parameters. The importance and flexibility of the new family are illustrated by means of an application to real data set.
A formal approach to produce a model for the data-generating distribution based on partial knowledge is the well-known maximum entropy method. In this approach, partial knowledge about the data-generating distribution is formulated in terms of some information constraints and the model is obtained by maximizing the Shannon entropy under these constraints. Frequently, in reliability analysis the problem of interest is the lifetime beyond an age t. In such cases, the distribution of interest for computing uncertainty and information is the residual distribution. The information functions involving a residual life distribution depend on t, and hence are dynamic. The maximum dynamic entropy (MDE) model is the distribution with the density that maximizes the dynamic entropy for all t. We provide a result that relates the orderings of dynamic entropy and the hazard function for distributions with monotone densities. Applications include dynamic entropy ordering within some parametric families of distributions, orderings of distributions of lifetimes of systems and their components connected in series and parallel, record values, and formulation of constraints for the MDE model in terms of the evolution paths of the hazard function and mean residual lifetime function. In particular, we identify classes of distributions in which some well-known distributions, including the mixture of two exponential distributions and the mixture of two Pareto distributions, are the MDE models.
We introduce and study general mathematical properties of a new generator of continuous distributions with two extra parameters called the Generalized Transmuted Family of Distributions. We investigate the shapes and present some special models. The new density function can be expressed as a linear combination of exponentiated densities in terms of the same baseline distribution. We obtain explicit expressions for the ordinary and incomplete moments and generating function, Bonferroni and Lorenz curves, asymptotic distribution of the extreme values, Shannon and Rényi entropies and order statistics, which hold for any baseline model. Further, we introduce a bivariate extension of the new family. We discuss the different methods of estimation of the model parameters and illustrate the potential application of the model via real data. A brief simulation for evaluating Maximum likelihood estimator is done. Finally certain characterziations of our model are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.