The platinum nanocomposites were synthesized by chemical reduction of H2PtCl6·6H2O in situ with a methanol—water mixture using mesoporous graphitic carbon nitride as a stabilizing matrix and a catalyst support. The textural, morphological, and optical properties of the obtained platinum – mesoporous carbon nitride composites (Pt/mpg-C3N4) were studied. Pt/mpg-C3N4 has been developed as an effective heterogeneous catalyst for the gas and liquid phase hydrogenation of phenylacetylene. An efficient and versatile approach to the modification of platinum with various organic solvents and ligands for the selective hydrogenation of phenylacetylene to styrene in a flow gas-phase process is pre-sented. The addition of pyridine, piperidine, or morpholine to the starting solution of phenylacetylene in hexane provides 95–100% conversion and 90–92% selectivity to styrene. A sharp increase in the selectivity to styrene without substantial changes in conversion is also observed when THF, ethanol, triethylamine, dioxane, or chloroform are used as diluents. The obtained Pt/mpg-C3N4 composites also demonstrated considerable catalytic activity in the selective hydrogenation of phenylacetylene to styrene at low temperatures in the liquid phase
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.