Aim To compare the population genetic structures of the haplotype‐sharing species Betula pendula and B. pubescens and to draw phylogeographic inferences using chloroplast DNA markers. In particular, we tested whether B. pendula and B. pubescens exhibited the same or different phylogeographic structures.
Location Western Europe and Russia.
Methods In this study we used both chloroplast DNA polymerase chain reaction‐restriction fragment length polymorphism and microsatellites to genotype B. pendula, B. pubescens and, to a limited extent, B. nana, in 53 populations across Eurasia. A spatial amova (samova) was used to identify major clusters within each species.
Results The low level of phylogeographic structure previously observed in B. pendula was confirmed, and the samova analysis retrieved only two major clusters. In contrast, seven clusters were observed in B. pubescens, although the overall level of population differentiation was similar to that of B. pendula.
Main conclusions We detected a difference in the population genetic structure between the two species, despite extensive haplotype sharing. It is difficult to ascribe this finding to a single factor, but divergence in ecology between the two species may provide part of the explanation. For both species, the contribution of southern western populations to the recolonization after the Last Glacial Maximum seems to have been limited, and eastern and western European populations apparently had different histories.
Two unigene datasets of Pinus taeda and Pinus pinaster were screened to detect di-, tri- and tetranucleotide repeated motifs using the SSRIT script. A total of 419 simple sequence repeats (SSRs) were identified, from which only 12.8% overlapped between the two sets. The position of the SSRs within their coding sequences were predicted using FrameD. Trinucleotides appeared to be the most abundant repeated motif (63 and 51% in P. taeda and P. pinaster, respectively) and tended to be found within translated regions (76% in both species), whereas dinucleotide repeats were preferentially found within the 5'- and 3'-untranslated regions (75 and 65%, respectively). Fifty-three primer pairs amplifying a single PCR fragment in the source species (mainly P. taeda), were tested for amplification in six other pine species. The amplification rate with other pine species was high and corresponded with the phylogenetic distance between species, varying from 64.6% in P. canariensis to 94.2% in P. radiata. Genomic SSRs were found to be less transferable; 58 of the 107 primer pairs (i.e. 54%) derived from P. radiata amplified a single fragment in P. pinaster. Nine cDNA-SSRs were located to their chromosomes in two P. pinaster linkage maps. The level of polymorphism of these cDNA-SSRs was compared to that of previously and newly developed genomic-SSRs. Overall, genomic SSRs tend to perform better in terms of heterozygosity and number of alleles. This study suggests that useful SSR markers can be developed from pine ESTs.
Based on two polymorphic chloroplast microsatellites that had been previously identified and sequence characterized in the genus Abies, genetic variation was studied in a total of 714 individuals from 17 European silver fir (Abies alba Mill.) populations distributed all over the natural range. We found eight and 18 different length variants at each locus, respectively, which combined into 90 different haplotypes. Genetic distances between most populations were high and significant. There is also evidence for spatial organization of the distribution of haplotypes, as shown by permutation tests, which demonstrate that genetic distances increase with spatial distances. A large heterogeneity in levels of diversity across populations was observed. Furthermore, there is good congruence in the levels of allelic richness of the two loci across populations. The present organization of levels of allelic richness across the range of the species is likely to have been shaped by the distribution of refugia during the last glaciation and the subsequent recolonization processes.
Mitochondrial DNA, widely applied in studies of population differentiation in animals, is rarely used in plants because of its slow rate of sequence evolution and its complex genomic organization. We demonstrate the utility of two polymorphic mitochondrial tandem repeats located in the second intron of the nad1 gene of Norway spruce. Most of the size variants showed pronounced population differentiation and a distinct geographical distribution. A GenBank search revealed that mitochondrial tandem repeats occur in a broad range of plant species and may serve as a novel molecular marker for unravelling population processes in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.