Three steels designated JPB, JPC and JPG from the IAEA Phase 3 Programme containing two copper and phosphorus levels were pre- and post-irradiation Charpy and hardness tested in the as-received (AR), 1200°C/0.5h heat treated (HT) and heat treated and 450°C/2000h aged (HTA) conditions. The HT condition, was designed to simulate coarse grained heat-affected zones (HAZ's) and showed a marked sensitivity to thermal ageing in all three alloys. Embrittlement after thermal ageing was greater in the higher phosphorus alloys JPB and JPG. Charpy shifts due to thermal ageing of between 118 and 209°C were observed and accompanied by pronounced intergranular fracture, due to phosphorus segregation. The irradiation embrittlement response was complex. The low copper alloys, JPC and JPB, in the HT and HTA condition exhibited significant irradiation induced Charpy shift but very low or even negative hardness changes indicating non-hardening embrittlement. The higher copper alloy, JPG, also exhibited irradiation hardening in line with its copper content. Fractographic and microchemical studies indicated irradiation induced phosphorus segregation and a transition from cleavage to intergranular failure at grain boundary phosphorus concentrations above a critical level. The enhanced grain boundary phosphorus level increased with dose in agreement with a kinetic segregation model developed at Harwell. The relevance of the thermal ageing studies to RPV Annealing for Plant-Life Extension was identified early in the programme. It is of concern that annealing of RPV's has been performed, or is proposed, at temperatures in the range 425–475°C for periods of about 1 week (168h). Much attention has been given to the use of in-situ hardness measurements and machining miniature Charpy and tensile specimens from belt-line plate and weld materials. However, HAZ's, often containing higher phosphorus levels than the present materials, have largely been ignored. A post-irradiation annealing (PIA) experiment was performed to provide an indication of the strength of the above concerns. The highest annealing temperature (475°C) and longest time (1 week) used in actual RPV anneals were chosen. In addition to Charpy tests on reconstituted specimens, hardness was used to determine hardening recovery, since this is common practice in RPV annealing. The hardness tests indicated that complete recovery of irradiation hardening was achieved by the anneal. Charpy tests, however, indicated a further increase in transition temperature, such that the shift due to irradiation, 69°C, was more than doubled to 155°C after PIA. The latter embrittlement was consistent with model predictions. The significant increase in shift after PIA is cause for concern in RPV annealing if coarse grained HAZ's are present. This is particularly so since hardness measurements, which gave a contrary indication, have traditionally been used to monitor the progress of annealing. The model calculations suggest that, in a sensitive material, annealing temperatures should probably not exceed about 425°C, if a net deterioration of toughness is to be avoided.
This paper presents a systematic review of the behavior of phosphorus (P), highlighting the implications of P segregation to grain boundaries under neutron irradiation. The review focuses on Mn-Mo-Ni steels employed in US pressurized water reactors (PWRs), and other PWRs worldwide. Segregation of P to grain boundaries in reactor pressure vessel (RPV) steels can occur during fabrication (especially during the slow cooling stage of a post-weld heat treatment), and as a result of in-service exposure to high operating temperature and irradiation. This segregation of P to grain boundaries can promote a change in the brittle fracture mode from transgranular (TGF) to intergranular (IGF), and a degradation in the mechanical properties. In US RPV steels, most data are on thermal aging of the heat-affected zone (HAZ). Studies in coarse-grained HAZ have shown that the embrittlement arising from segregation of P to grain boundaries is approximately linearly related to the proportion of the brittle fracture that is IGF, and/or the P concentration at the grain boundary. Data are sparse on the effect of irradiation at 288°C on P segregation, and on the contribution of IGF to the total shift in the 41J transition temperature, T41J. In general, the bulk P content appears to be less than about 0.028 wt% P, with base metals having lower levels than weldments. In addition, the consequences of vessel annealing are considered at temperatures around 475°C. It is certain that the annealing treatment will have the consequence of reducing the irradiation hardening, but may significantly increase the grain boundary phosphorus coverage and the likelihood of IGF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.