Abstract. Ephemeral streams induce flash-flood events, which cause dramatic morphological changes and impacts on population, mainly because they are intermittent and less predictable. Human pressures on the basin modify load and discharge relationships, inducing dormant instability on the fluvial system that will manifest abruptly during flood events. The flash-flood response of two ephemeral streams affected by load supply modification due to land use changes is discussed in a combination of geomorphic and hydraulic approaches. During the Rivillas flash flood, intensive clearing on the basin led to high rates of sediment flowing into an artificially straightened and inefficient channel. The stream evolved from a sinuous single channel into a shallow braiding occupying the entire width of the valley floor. Misfits and unsteady channel conditions increased velocity, stream power and sediment entrainment capacity and considerably magnified flood damage. Resulting morphosedimentary features revealed a close relationship with the valley floor postflood hydraulic model, and pre-event awareness would have made it possible to predict risk-sensitive areas. In the second case, the Azohía stream, modelling of current pre-flood channel conditions make it possible to determine channel narrowing and entrenchment in the lower alluvial fan stretch. Abandonment of intensive agriculture, basin reforestation and urbanization diminish load contribution and trigger channel incision. This induces an increase in slope and velocity in the bankfull channel, producing renewed erosive energy and thus activating upstream propagation of incision and bank undermining. The absence of water-spreading dynamics on the alluvial fan in favour of confinement in a single channel produces an unstable dynamic in the system, also offering a false sense of stability, as long as no large magnitude floods occur. When modelling flood-prone areas and analysing hydraulic variables, it is important to detect possible anthropic disturbances that may affect basin load budgets in order to anticipate catastrophic consequences resulting from inappropriate fluvial management before the occurrence of an extraordinary event.
Abstract.The Guadiana River has a significant record of historical floods, but the systematic data record is only 59 years. From layers left by ancient floods we know about we can add new data to the record, and we can estimate maximum discharges of other floods only known by the moment of occurrence and by the damages caused. A hydraulic model has been performed in the area of Pulo de Lobo and calibrated by means of the rating curve of Pulo do Lobo Station. The palaeofloods have been dated by means of 14 C y 137 Cs. As non-systematic information has been used in order to calculate distribution functions, the quantiles have changed with respect to the same function when using systematic information. The results show a variation in the curves that can be blamed on the human transformations responsible for changing the hydrologic conditions as well as on the latest climate changes. High magnitude floods are related to cold periods, especially at transitional moments of change from cold to warm periods. This tendency has changed from the last medium-high magnitude flood, which took place in a systematic period. Both reasons seem to justify a change in the frequency curves indicating a recent decrease in the return period of big floods over 8000 m 3 s −1 . The palaeofloods indicate a bigger return period for the same water level discharge thus showing the river basin reference values in its natural condition previous to the transformation of the basin caused by anthropic action.
Abstract. Ephemeral streams induce flash-flood events which cause dramatic morphological changes and impacts on population, due the intermittent activity of these fluvial systems. Human pressure changes the fluvial environment and so enhances the effects of natural dynamics. Local human-induced modifications can be latent over long periods of time. These changes can be studied after the flood event, to quantify their effects and detect which are most harmful. In this paper we study flash-flood effects at two sites in Spain and compare the results before and after a~flood event. Erosion is associated with areas where there have been more anthropogenic changes in floodplains and channels. Deposition is related to erosional processes in the watershed and to the tributaries. Disruption of river channel patterns changes connectivity and scouring appears due to energy excess. This excess tends to concentrate at weak points downstream produced by anthropic disturbances. Riparian vegetation is an energy sink and reaches with more cover show less erosion than those with deforestation. Infrastructures perpendicular to the direction of flow increase stream power, but peaks of erosion on the floodplain appear displaced downstream. It is important to detect human changes by analysis of hydraulic variables before the occurrence of an extraordinary event in order to anticipate catastrophic consequences resulting from inappropriate fluvial management.
The river Jarama is a medium-sinuosity meandering river with gravel bedload. Throughout the Quaternary it developed a large number of terraces in a repetitive sequence of aggradation-stability-degradationstability stages, which are studied in the middle reach of the river, applying geomorphological and sedimentological methods, as well as kadiocarbon dating techniques. The Upper Terrace System of earliest Pleistocene to mid Pleistocene age forms isolated fragments vertically disconnected and colluviated, and their sequential distribution of facies implies lateral shifting of channels and a welldeveloped flood plain. The Middle Terrace System of mid-to-late Pleistocene age has differentiated levels in the upstream reaches while downstream they condense giving a thick multi-episodic series, corresponding to the tectonic tilting of the basin. Classical point bar fining-upward sequences of a medium-to high-sinuosity river (with gravels and sands as bedload) are clearly differentiated in them. A major degradation stage follows this group of terraces, with an incision of up to 30 m. Then, during a relatively long period of stability, a forest of riparian species developed, prior to the last aggradational stage of the Lower Terrace System. The aggradation resulted in a fining-upward sequence where lateral accretion is clearly visible in the gravels, due to migration of the medium-to low-sinuosity river. Sedimentation continued and was active up to the 1950s, but since then, intense anthropogenic modifications led to renewed incision of the river. Terra Nova, 6,465475, 1994.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.