Black phosphorus (bP) is the second known elemental allotrope with a layered crystal structure that can be mechanically exfoliated to atomic layer thickness. Unlike metallic graphite and semi-metallic graphene, bP is a semiconductor in both bulk and few-layer form. Here we fabricate bP-naked quantum wells in a back-gated field effect transistor geometry with bP thicknesses ranging from 6±1 nm to 47±1 nm. Using a polymer encapsulant, we suppress bP oxidation and observe field effect mobilities up to 900 cm2 V−1 s−1 and on/off current ratios exceeding 105. Shubnikov-de Haas oscillations observed in magnetic fields up to 35 T reveal a 2D hole gas with Schrödinger fermion character in a surface accumulation layer. Our work demonstrates that 2D electronic structure and 2D atomic structure are independent. 2D carrier confinement can be achieved without approaching atomic layer thickness, advantageous for materials that become increasingly reactive in the few-layer limit such as bP.
Measurements of deexcitation g rays in coincidence with the momentum distribution of the projectile residues produced in reactions of the type 9 Be͑ 28 P, 27 Si 1 g͒X at energies around 65 MeV͞u are used to study single-nucleon stripping to individual states. The cross sections are compared with calculations based on an eikonal model description of the reaction and the shell model. The measurements indicate that the halo character of the ground state and other detailed spectroscopic information can be derived using knockout reactions in inverse kinematics. [S0031-9007(98)
The fractional quantum Hall effect is observed at low magnetic field where the cyclotron energy is smaller than the Coulomb interaction energy. The nu=5/2 excitation gap at 2.63 T is measured to be 262+/-15 mK, similar to values obtained in samples with twice the electronic density. Examining the role of disorder on the 5/2 state, we find that a large discrepancy remains between theory and experiment for the intrinsic gap extrapolated from the infinite mobility limit. The observation of a 5/2 state in the low-field regime suggests that inclusion of nonperturbative Landau level mixing may be necessary to fully understand the energetics of half-filled fractional quantum Hall liquids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.