Honey is both a complex food and medicine as well as a healthy alternative to refined sugar. Besides a complex mixture of carbohydrates, honey contains other minor substances which may threaten human health in excess concentrations. Several environmental conditions can affect the quality of honey. This research paper aims to measure the degree of heavy metals (Lead (Pb), Cadmium (Cd), Zinc (Zn), and Copper (Cu)) in some polyfloral honey from an industrial area of Romania, considered to be one of the most polluted regions in Eastern Europe. The samples were collected from six stationary apiaries and analysed using the atomic absorption spectrometry method. The content of Pb was higher in the sampling areas exposed directly to the polluted air masses. Cd concentration decreases exponentially while Cu concentration increases as the distance from the source of pollution increases. The checking of the quality of polyfloral honey from local producers is imperative because this product is intended to be consumed by the beekeeper’s family or the local community without being sold to an authorised processor. The results of the study can help to set a threshold for the concentration of Pb and Cd in honey marketed in the European Union.
The most serious quality issue of natural resources for human consumption or medicinal purposes is the contamination with pollutants harmful to consumers. Common blackberry (Rubus fruticosus L.) is a sought-after nutraceutical and an important component in herbal medicine in many places around the globe. The present study aims to analyze the level of heavy metal bioaccumulation in blackberry organs, as well as its spatial distribution in two consecutive years immediately after the interruption of the extended activity of the industrial source of pollution. The research was conducted in one of the most polluted areas in Romania and Eastern Europe, within a 26 km radius of the source of pollution. The Pb, Cd, Cu, and Zn concentrations in the leaves, flowers, and unwashed blackberry fruits were analyzed spectrophotometrically through flame atomic absorption spectroscopy (FAAS). The results show that blackberry is an important bioaccumulator of these heavy metals—71% of the Pb concentration values and 100% of the Cd concentration values exceeded the World Health Organization thresholds by up to 29 and 15 times, respectively. Also, the leaves are the largest reservoirs of Pb and Zn (the median values: 51.4 mg/kg dry weight and 105.2 mg/kg d.w., respectively), and the flowers contained the largest quantities of Cd and Cu (2.54 mg/kg d.w. and 11.3 mg/kg d.w., respectively). The Pb concentrations decreased by a power function in relation to the distance from the source of pollution. The implications of these results on the safety of the use of blackberry are discussed. The urgent necessity for food education of the local population which consumes contaminated nutraceutical products is emphasized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.