Abstract-Traffic prediction algorithms can help improve the performance of Intelligent Transportation Systems (ITS). To this end, ITS require algorithms with high prediction accuracy. For more robust performance, the traffic systems also require a measure of uncertainty associated with prediction data. Data driven algorithms such as Support Vector Regression (SVR) perform traffic prediction with overall high accuracy. However, they do not provide any information about the associated uncertainty. The prediction error can only be calculated once field data becomes available. Consequently, the applications which use prediction data, remain vulnerable to variations in prediction error. To overcome this issue, we propose Bayesian Support Vector Regression (BSVR). BSVR provides error bars along with the predicted traffic states. We perform sensitivity and specificity analysis to evaluate the efficiency of BSVR in anticipating variations in prediction error. We perform multi-horizon prediction and analyze the performance of BSVR for expressways as well as general road segments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.