Australian infectious bronchitis viruses (IBV) have undergone a separate evolution due to geographic isolation. Consequently, changes occurring in Australian IBV illustrate, independently from other countries, types of variability that could occur in emerging IBV strains. Previously, we have identified two distinct genetic groups of IBV, designated subgroups 1 and 2. IBV strains of subgroup 1 have S1 and N proteins that share a high degree of amino acid identity, 81 to 98% in S1 and 91 to 99% in N. Subgroup 2 strains possess S1 and N proteins that share a low level of identity with subgroup 1 strains: 54 to 62% in S1 and 60 to 62% in N. This paper describes the isolation and characterisation of a third, previously undetected genetic group of IBV in Australia. The subgroup 3 strains, represented by isolate chicken/Australia/N2/04, had an S1 protein that shared a low level of identity with both subgroups 1 and 2: 61 to 63% and 56 to 59%, respectively. However, the N protein and the 3' untranslated region were similar to subgroup 1: 90 to 97% identical with the N protein of subgroup 1 strains. This N4/02 subgroup 3 of IBV is reminiscent of two other strains, D1466 and DE072, isolated in the Netherlands and in the USA, respectively. The emergence of the subgroup 3 viruses in Australia, as well as the emergence of subgroup 2 in 1988, could not be explained by any of the mechanisms that are currently considered to be involved in generation of IBV variants.
Surveillance of wild birds for avian influenza viruses has been compulsory in the European Union (EU) since 2005, primarily as a means of detecting H5N1 highly pathogenic avian influenza (HPAI) virus and of monitoring the circulation of low pathogenicity avian influenza (LPAI) virus H5 and H7 strains. In 2007, 79,392 wild birds were tested throughout the EU. H5N1 HPAI was detected in 329 birds from four Member States (MS); affected birds were almost entirely of the orders Podicipediformes (grebes) and Anseriformes (waterfowl) during the summer months. LPAI was detected in 1485 wild birds among 21 MS. A total of 1250 birds were positive for influenza A but were not discriminated any further; LPAI H5 was detected in 105 birds, exclusively of the order Anseriformes. LPAI H7 was detected in seven birds. LPAI of other subtypes was found in 123 birds. Epidemiologic evidence and phylogenetic analysis of H5N1 viruses indicate that H5N1 did not appear to persist in the EU from 2006 but was reintroduced, probably from the Middle East.
Phage-displayed recombinant antibody libraries derived from splenic mRNA of chickens immunized with an Australian strain of infectious bursal disease virus (IBDV) were constructed as single chain variable fragments (scFv) by either overlap extension polymerase chain reaction (PCR) or sequential ligation of the individual heavy (V(H)) and light (V(L)) chain variable gene segments. Sequential cloning of the individual V(H) and V(L) genes into a newly constructed pCANTAB-link vector containing the synthetic linker sequence (Gly(4)Ser)(3) was more efficient than cloning by overlap extension PCR, increasing the library size 500 fold. Eighteen IBDV specific antibodies with unique scFv sequences were identified after panning the library against the immunizing antigen. Eight of the clones contained an identical V(H) gene but unique V(L) genes. In ELISA analysis using a panel of Australian and overseas IBDV strains, one scFv antibody was able to detect all strains, whilst 3 others could discriminate between Australian and overseas strains, classical and variant strains and Australian field strains and vaccine strains. In addition, some scFvs showed significant neutralization titres in vitro. This report shows that generation of chicken antibodies in vitro by recombinant means has considerable potential for producing antibodies of diverse specificity and neutralizing capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.