To generate a domestic horse genome map we integrated synteny information for markers screened on a somatic cell hybrid (SCH) panel with published information for markers physically assigned to chromosomes. The mouse-horse SCH panel was established by fusing pSV2neo transformed primary horse fibroblasts to either RAG or LMTk mouse cells, followed by G418 antibiotic selection. For each of the 108 cell lines of the panel, we defined the presence or absence of 240 genetic markers by PCR, including 58 random amplified polymorphic DNA (RAPD) markers and 182 microsatellites. Thirty-three syntenic groups were defined, comprised of two to 26 markers with correlation coefficient (r) values ranging from 0.70 to 1.0. Based on significant correlation values with physically mapped microsatellite (type II) or gene (type I) markers, 22 syntenic groups were assigned to horse chromosomes (1, 2, 3, 4, 6, 9, 10, 11, 12, 13, 15, 18, 19, 20, 21, 22, 23, 24, 26, 30, X and Y). The other 11 syntenic groups were provisionally assigned to the remaining chromosomes based on information provided by heterologous species painting probes and work in progress with type I markers.
A comprehensive second-generation whole genome radiation hybrid (RH II), cytogenetic and comparative map of the horse genome (2n = 64) has been developed using the 5000rad horse × hamster radiation hybrid panel and fluorescence in situ hybridization (FISH). The map contains 4,103 markers (3,816 RH; 1,144 FISH) assigned to all 31 pairs of autosomes and the X chromosome. The RH maps of individual chromosomes are anchored and oriented using 857 cytogenetic markers. The overall resolution of the map is one marker per 775 kilobase pairs (kb), which represents a more than five-fold improvement over the first-generation map. The RH II incorporates 920 markers shared jointly with the two recently reported meiotic maps. Consequently the two maps were aligned with the RH II maps of individual autosomes and the X chromosome. Additionally, a comparative map of the horse genome was generated by connecting 1,904 loci on the horse map with genome sequences available for eight diverse vertebrates to highlight regions of evolutionarily conserved syntenies, linkages, and chromosomal breakpoints. The integrated map thus obtained presents the most comprehensive information on the physical and comparative organization of the equine genome and will assist future assemblies of whole genome BAC fingerprint maps and the genome sequence. It will also serve as a tool to identify genes governing health, disease and performance traits in horses and assist us in understanding the evolution of the equine genome in relation to other species.
A medium-density map of the horse genome (Equus caballus) was constructed using genes evenly distributed over the human genome. Three hundred and twenty-three exonic primer pairs were used to screen the INRA and the CHORI-241 equine BAC libraries by polymerase chain reaction and by filter hybridization respectively. Two hundred and thirty-seven BACs containing equine gene orthologues, confirmed by sequencing, were isolated. The BACs were localized to horse chromosomes by fluorescent in situ hybridization (FISH). Overall, 165 genes were assigned to the equine genomic map by radiation hybrid (RH) (using an equine RH(5000) panel) and/or by FISH mapping. A comparison of localizations of 713 genes mapped on the horse genome and on the human genome revealed 59 homologous segments and 131 conserved segments. Two of these homologies (ECA27/HSA8 and ECA12p/HSA11p) had not been previously identified. An enhanced resolution of conserved and rearranged chromosomal segments presented in this study provides clarification of chromosome evolution history.
A low-density, male-based linkage map was constructed as one of the objectives of the International Equine Gene Mapping Workshop. Here we report the second generation map based on testing 503 half-sibling offspring from 13 sire families for 344 informative markers using the CRIMAP program. The multipoint linkage analysis localized 310 markers (90%) with 257 markers being linearly ordered. The map included 34 linkage groups representing all 31 autosomes and spanning 2262 cM with an average interval between loci of 10.1 cM. This map is a milestone in that it is the first map with linkage groups assigned to each of the 31 automosomes and a single linkage group to all but three chromosomes.
Comparative biochemical and histopathological data suggest that a deficiency in the glycogen branching enzyme (GBE) is responsible for a fatal neonatal disease in Quarter Horse foals that closely resembles human glycogen storage disease type IV (GSD IV). Identification of DNA markers closely linked to the equine GBE1 gene would assist us in determining whether a mutation in this gene leads to the GSD IV-like condition. FISH using BAC clones as probes assigned the equine GBE1 gene to a marker deficient region of ECA26q12→q13. Four other genes, ROBO2, ROBO1, POU1F1, and HTR1F, that flank GBE1 within a 10-Mb segment of HSA3p12→p11, were tightly linked to equine GBE1 when analyzed on the Texas A&M University 5000 rad equine radiation hybrid panel, while the GLB1, MITF, RYBP, and PROS1 genes that flank this 10-Mb interval were not linked with markers in the GBE1 group. A polymorphic microsatellite (GBEms1) in a GBE1 BAC clone was then identified and genetically mapped to ECA26 on the Animal Health Trust full-sibling equine reference family. All Quarter Horse foals affected with GSD IV were homozygous for an allele of GBEms1, as well as an allele of the most closely linked microsatellite marker, while a control horse population showed significant allelic variation with these markers. This data provides strong molecular genetic support for the candidacy of the GBE1 locus in equine GSD IV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.