Rat liver glutathione S-transferases have previously been defined by their elution behaviour from DEAE-cellulose and CM-cellulose as M, E, D, C, B, A and AA. These enzymes are dimeric proteins which comprise subunits of mol.wt. 22 000 (Ya), 23 500 (Yb) or 25 000 (Yc). Evidence is presented that YaYa protein, one of two previously described lithocholate-binding proteins which exhibit transferase activity, is an additional enzyme which is not included in the M, E, D, C, B, A and AA nomenclature. We therefore propose that this enzyme is designated transferase YaYa. Transferases YaYa, C, A and AA have molecular weights of 44 000, 47 000, 47 000 and 50 000 respectively and each comprises two subunits of identical size. These enzymes were purified to allow a study of their structural and functional relationships. In addition, transferase A was further resolved into three forms (A1, A2 and A3) which possess identical activities and structures and appear to be the product of a single gene. Transferases YaYa, C, A and AA each had distinct enzymic properties and were inhibited by cholate. The recently proposed proteolytic model, which attributes the presence of multiple forms of glutathione S-transferase activity to partial proteolysis of transferase AA, was tested and shown to be highly improbable. Peptide maps showed significant differences between transferases YaYa, C, A and AA. Immunotitration studies demonstrated that antisera raised against transferases YaYa and C did not precipitate transferase AA.
Monospecific polyclonal antisera have been raised to purified bovine heart succinate dehydrogenase and to the individual large and small subunits of this enzyme. These antisera exhibit cross-reactivity with the corresponding polypeptides in rat liver (BRL), pig kidney (PK-15) and bovine kidney (NBL-1) cell lines, and were employed to investigate some of the events involved in the biogenesis of succinate dehydrogenase in the PK-15 cell line. Newly-synthesized forms of the large and small subunits of succinate dehydrogenase were detected in cultured PK-15 and BRL cells labelled with [35S]methionine in the presence of uncouplers of oxidative phosphorylation. In PK-15 cells, the precursor forms of the large and small subunits exhibit Mr values approx. 1000-2000 and 4000-5000 greater than those of the corresponding mature forms. When the uncoupler is removed in pulse-chase experiments, complete conversion of the precursors to the mature forms occurs within 45 min. Studies on the kinetics of processing and stability of the large subunit precursor revealed that reversal of precursor accumulation is rapid, with processing occurring with a half-time of 5-7.5 min, and that the accumulated precursor exhibits long-term stability when PK-15 cells are maintained in the presence of 2,4-dinitrophenol.
Specific, polyclonal antisera have been raised to the native branched-chain 2-oxoacid dehydrogenase complex (BCOADC) from bovine kidney and each of its three constituent enzymes: El, the substrate-specific 2-oxoacid dehydrogenase; E2, the multimeric dihydrolipoamide acyltransferase 'core' enzyme and E3, dihydrolipoamide dehydrogenase. Purified BCOADC, isolated by selective poly(ethyleneglyco1) precipitation and hydroxyapatite chromatography, contains only traces of endogenous E3 as detected by a requirement for this enzyme in assaying overall complex activity and by immunoblotting criteria. A weak antibody response was elicited by the E 1 j subunit relative to the E2 and Elcr polypeptides employing either purified El or BCOADC as antigens.Anti-BCOADC serum showed no cross-reaction with high levels of pig heart E3 indicating the absence of antibody directed against this component. However, immunoprecipitates of mature BCOADC from detergent extracts of NBL-1 (bovine kidney) or PK-15 (porcine kidney) cell lines incubated for 3-4 h in the presence of [35S]methionine contained an additional 55000-Mr species which was identified as E3 on the basis of immunocompetition studies.Accumulation of newly synthesised [35S]methionine-labelled precursors for E2, Ela and E3 was achieved by incubation of PK-15 cells for 4 h in the presence of uncouplers of oxidative phosphorylation. Pre-E2 exhibited an apparent M , value of 56500, pre-Ela, 49000 and pre-E3, 57000 compared to subunit M , values of 50000,46000 and 55 000, respectively, for the mature polypeptides. Thus, like the equivalent lipoate acyltransferases of the mammalian pyruvate 'dehydrogenase (PDC) and 2-oxoglutarate dehydrogenase (OGDC) complexes, pre-E2 of BCOADC characteristically contains an extended presequence.In NBL-1 cells, pre-E2 was found to be unstable since no cytoplasmic pool of this precursor could be detected; moreover, processed Ela was not assembled into intact BCOADC as evidenced by the absence of E2 or E3 in immunoprecipitates with anti-(BCOADC) serum after a 45-min 'chase' period in the absence of uncoupler. Dihydrolipoamide dehydrogenase (E3), in its precursor state, was not present in immune complexes with anti-(BCOADC) serum, indicating that its co-precipitation with mature complex is by virtue of its high affinity for assembled complex in vivo whereas no equivalent interaction of pre-E3 with its companion precursors occurs prior to mitochondrial import.The mitochondrial branched-chain 2-oxoacid dehydrogenase complex (BCOADC) catalyses an irreversible step in the oxidation of the branched-chain amino acids leucine, isoleucine and valine (see [I, 21 for reviews). It may also be involved in the catabolism of threonine and methionine since 2-oxobutyrate and 4-methylthio-2-oxobutyrate can also act as substrates for this complex [3j.In common with the structurally and functionally analogous pyruvate dehydrogenase (PDC) and 2-oxoglutarate dehydrogenase (OGDC) complexes, BCOADC can be isolated as a functional high-Mr assembly containing multiple copies o...
The arrangement of the large (70,000-Mr) and small (30,000-Mr) subunits of succinate dehydrogenase in the mitochondrial inner membrane was investigated by immunoblot analysis of bovine heart mitochondria (right-side-out, outer membrane disrupted) or submitochondrial particles (inside-out) that had been subjected to surface-specific proteolysis. Both subunits were resistant to proteinase treatment provided that the integrity of the inner membrane was preserved, suggesting that neither subunit is exposed at the cytoplasmic surface of the membrane. The bulk of the small subunit appears to protrude into the matrix compartment, since the 30,000-Mr polypeptide is degraded extensively during limited proteolysis of submitochondrial particles without the appearance of an immunologically reactive membrane-associated fragment: moreover, a soluble 27,000-Mr peptide derived from this subunit is observed transiently on incubation with trypsin. Similar data obtained from the large subunit suggest that this polypeptide interacts with the matrix side of the inner membrane via two distinct domains; these are detected as stable membrane-associated fragments of 32,000 Mr and 27,000 Mr after treatment of submitochondrial particles with papain or proteinase K, although the 27,000-Mr fragment can be degraded further to low-Mr peptides with trypsin or alpha-chymotrypsin. A stable 32,000-34,000-Mr fragment is generated by a variety of specific and non-specific proteinases, indicating that it may be embedded largely within the lipid bilayer, or is inaccessible to proteolytic attack owing to its proximity to the surface of the intact membrane, possibly interacting with the hydrophobic membrane anchoring polypeptides of the succinate: ubiquinone reductase complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.