IGFBP-1 is elevated in fetuses with long-term, chronic hypoxia and intrauterine growth restriction. We investigated the hypothesis that hypoxia regulates IGFBP-1 in the human fetus in vivo and IGFBP-1 gene expression and protein in vitro. Umbilical artery IGFBP-1 levels (mean ؎ SEM) from term babies with respiratory acidosis (acute hypoxia), normal babies, and those with mixed respiratory/metabolic acidosis (more profound and prolonged hypoxia) were measured using an immunoradiometric assay. IGFBP-1 levels were similar in normal (n ؍ 12) and acutely hypoxic (n ؍ 6) babies (189.1 ؎ 71.8 vs. 175.8 ؎ 45.9 ng /ml, respectively, P ؍ 0.789). However, with more profound and prolonged hypoxia (n ؍ 19), IGFBP-1 levels were markedly elevated (470.6 ؎ 80.0 ng /ml, P ؍ 0.044). To investigate IGFBP-1 regulation by hypoxia in vitro, HepG2 cells were incubated under hypoxia (pO 2 ؍ 2%) and normoxia (pO 2 ؍ 20%). IGFBP-1 protein and mRNA increased 8-and 12-fold, respectively, under hypoxic conditions. Hypoxia did not affect protein or mRNA levels of IGFBP-2 or -4. IGFBP-5 and -6 mRNAs, undetectable in control cells, were not induced by hypoxia, whereas minimally expressed IGFBP-3 mRNA increased twofold. Investigation into IGFBP-1 gene structure revealed three potential consensus sequences for the hypoxia response element (HRE) in the first intron. To investigate functionality, a 372-bp fragment of IGFBP-1 intron 1, containing putative HREs, was placed 5 to a heterologous hsp70 promoter in a plasmid using luciferase as a reporter gene. Under hypoxia, reporter gene activity increased up to 30-fold. Mutations in the middle HRE abolished reporter activity in response to hypoxia, suggesting that this HRE is functional in the IGFBP-1 hypoxia response. Cotransfection of HRE reporter genes with a constitutively expressing hypoxia-inducible factor 1 plasmid in HepG2 cells resulted in a fourfold induction of reporter activity, suggesting a role for hypoxia-inducible factor 1 in hypoxia induction of IGFBP-1 gene expression. These data support the hypothesis that hypoxia regulation of IGFBP-1 may be a mechanism operating in the human fetus to restrict insulin-like growth factor-mediated growth in utero under conditions of chronic hypoxia and limited substrate availability.
The IGF family plays an important role in implantation and placental physiology. IGF-II is abundantly expressed by placental trophoblasts, and IGF binding protein (IGFBP)-4, a potent inhibitor of IGF actions, is the second most abundant IGFBP in the placental bed, expressed exclusively by the maternal decidua. Proteolysis of IGFBP-4 results in decreased affinity for IGF peptides, thereby enhancing IGF actions. In the current study, we have identified the IGFBP-4 protease and its inhibitor in human trophoblast and decidualized endometrial stromal cell cultures, and we have investigated their regulation in an effort to understand control of IGF-II bioavailability at the placental-decidual interface in human implantation. IGFBP-4 protease activity was detected in conditioned media (CM) from human trophoblasts and decidualized endometrial stromal cells using (125)I-IGFBP-4 substrate. Identification of the IGFBP-4 protease as pregnancy-associated plasma protein-A (PAPP-A) was confirmed by specific immunoinhibition and immunodepletion of the IGFBP-4 protease activity with specific PAPP-A antibodies. The IGFBP-4 protease activity was IGF-II-dependent in trophoblast CM. In decidualized stromal CM, PAPP-A/IGFBP-4 protease activity was also IGF-II-dependent, but was evident only when IGF-II was added in molar excess of the predominant IGFBP in decidualized stromal cell CM, IGFBP-1, supporting bioavailable IGF-II as a key cofactor of IGFBP-4 proteolysis by PAPP-A. Cultured first and second trimester human trophoblasts (n = 5) secreted PAPP-A into CM with mean +/- SEM levels of 172.4 +/- 32.8 mIU/liter.10(5) cells, determined by specific ELISA. PAPP-A in trophoblast CM (n = 3) and did not change in the presence of IGF-II (1-100 ng/ml). Cultured human endometrial stromal cells (n = 4) secreted low levels of PAPP-A (6.25 +/- 3.6 mIU/liter.10(5) cells). A physiological inhibitor of PAPP-A, the proform of eosinophil major basic protein (proMBP), was detected in trophoblast CM at levels of 1853 +/- 308 mIU/liter.10(5) cells, determined by specific ELISA, and was nearly undetectable in CM of human endometrial stromal cells. Upon in vitro decidualization of endometrial stromal cells with progesterone, PAPP-A levels in CM increased nearly 9-fold without a concomitant change in proMBP. In contrast to the experiments with trophoblasts, IGF-II and the IGF analogues, Leu(27) IGF-II, and Des (1-6) IGF-II, resulted in a dose-dependent decrease of PAPP-A levels in decidualized endometrial stromal CM by 70-90%, and a dose-dependent increase in proMBP of 14- to 41-fold. The data demonstrate conclusively that the IGF-II-dependent IGFBP-4 protease of human trophoblast and decidual origin is PAPP-A. Furthermore, the differential regulation of decidual PAPP-A and proMBP by insulin-like peptides supports a role for trophoblast-derived IGF-II as a paracrine regulator of these maternal decidual products that have the potential to regulate IGF-II bioavailability at the trophoblast-decidual interface. Overall, the data underscore potential roles for ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.