In this paper we present the development of numerical methods for two problems in chemical engineering: adsorption of carbon dioxide into phenyl glycidyl ether and diffusion and reaction processes in a porous catalyst. Both problems are modelled by systems of two coupled nonlinear ordinary differential equations. Dirichlet and Neumann type boundary conditions are considered. We develop the standard homotopy analysis method and the boundary-domain element method to solve for the unknown steady-state concentrations of reactants. The validity of the proposed methods is checked and demonstrated by numerical examples. Convergence rates are compared and the advantages and drawbacks of the proposed methods are discussed and compared to the Mathematica NDSOLVE solver. We show, that the proposed homotopy analysis method features exponential convergence rate and is highly accurate and efficient. As low as 6 terms are needed to reach error norms of 10 À5 : Furthermore, the boundary-domain integral approach is also capable of solving the same problem very efficiently, using a very coarse computational mesh (21 nodes).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.