-Multivariate morphometric analyses were performed on 2923 individual worker bees from 184 colonies representing 103 localities across the full distributional area of Apis florea Fabricius 1787 from Vietnam and southeastern China to Iran and Oman (~7000 km). Morphologically A. florea is unequivocally separable from A. andreniformis. Comparisons of geographically separated A. florea populations result in morphoclusters that reflect sampling artifacts. These morphoclusters change clinally with latitude but overlap when the full database is contained in the same principal component analysis. A cluster analysis based on Euclidean distances suggests degrees of affinity between various geographic groupings of A. florea. This species occupies a large area that includes rainforests, savannas, subtropical steppes, and semideserts. The seasonality of reproductive swarming is temporally continuous allowing gene flow throughout this panmictic species.Apis florea / morphometrics / distribution / biogeography / swarming / migration
This research was conducted to evaluate acaricidal effects of some plant essences on Varroa mites and the possibility of their usage for Varroa control. First, live Varroa mites were obtained from adult honeybees with CO2 in a newly designed apparatus. Thyme, savory, rosemary, marjoram, dillsun and lavender essences at concentrations of 2 and 1 g/100 g (w/w), caused a mite mortality rate of more than 97% and 95%, respectively. Also spearmint at 2 g/100 g was able to kill more than 97% of Varroa mites. When sprayed on worker honeybees infected with mites, thyme, savory, spearmint and dillsun essences at 2 g/100 g (w/w) caused 43-58% Varroa mortality. Toxicity of thyme, savory and spearmint essences for worker honeybees was not significantly different from that of controls (acetone and water), but dillsun essence caused 12% honeybee mortality. These results showed that essences of thyme, savory and spearmint have acaricidal properties that could be used for controlling Varroa in honeybee colonies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.