Driven by the demand for ongoing integration and increased complexity of today's microelectronic circuits, smaller and smaller structures need to be fabricated with a high throughput. In contrast to serial nanofabrication techniques, based, e.g., on electron beam or scanning probe methods, optical methods allow a parallel approach and thus a high throughput. However, they rarely reach the desired resolution. One example is plasmon lithography, which is limited by the utilized plasmonic metal structures. Here we show a new approach extending plasmonic lithography with the potential for a highly parallel nanofabrication with a higher level of complexity based on nanoantenna effects combined with molecular nanowires. Thereby femtosecond laser pulse light is converted by Ag nanoparticles into a high plasmonic excitation guided along attached DNA structures. An underlying poly(methyl methacrylate) (PMMA) layer acting as an electron-sensitive resist is so structured along the former DNA position. This apparently DNA-guided effect leads to nanometer grooves reaching even micrometers away from the excited nanoparticle, representing a novel effect of long-range excitation transfer along DNA nanowires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.