The applicability of a HVGGSSV peptide targeted "nanosponge" drug delivery system for sequential administration of a microtubule inhibitor (paclitaxel) and topoisomerase I inhibitor (camptothecin) was investigated in a lung cancer model. Schedule-dependent combination treatment with nanoparticle paclitaxel (NP PTX) and camptothecin (NP CPT) was studied in vitro using flow cytometry and confocal imaging to analyze changes in cell cycle, microtubule morphology, apoptosis, and cell proliferation. Results showed significant G2/M phase cell cycle arrest, changes in microtubule dynamics that produced increased apoptotic cell death and decreased proliferation with initial exposure to NP PTX, followed by NP CPT in lung cancer cells. In vivo molecular imaging and TEM studies validated HVGGSSV-NP tumor binding at 24 h and confirmed the presence of Nanogold labeled HVGGSSV-NPs in tumor microvascular endothelial cells. Therapeutic efficacy studies conducted with sequential HVGGSSV targeted NP PTX and NP CPT showed 2-fold greater tumor growth delay in combination versus monotherapy treated groups, and 4-fold greater delay compared to untargeted and systemic drug controls. Analytical HPLC/MS methods were used to quantify drug content in tumor tissues at various time points, with significant paclitaxel and camptothecin levels in tumors 2 days postinjection and continued presence of both drugs up to 23 days postinjection. The efficacy of the NP delivery system in sequential treatments was corroborated in both in vitro and in vivo lung cancer models showing increased G2/M phase arrest and microtubule disruption, resulting in enhanced apoptotic cell death, decreased cell proliferation and vascular density.
Purpose: The purpose of this study was to achieve improved cancer-specific delivery and bioavailability of radiation-sensitizing chemotherapy using radiation-guided drug delivery.Experimental Design: Phage display technology was used to isolate a recombinant peptide (HVGGSSV) that binds to a radiation-inducible receptor in irradiated tumors. This peptide was used to target nabpaclitaxel to irradiated tumors, achieving tumor-specificity and enhanced bioavailability of paclitaxel.Results: Optical imaging studies showed that HVGGSSV-guided nab-paclitaxel selectively targeted irradiated tumors and showed 1.48 ± 1.66 photons/s/cm 2 /sr greater radiance compared with SGVSGHV-nab-paclitaxel, and 1.49 ± 1.36 photons/s/cm 2 /sr greater than nab-paclitaxel alone (P < 0.05). Biodistribution studies showed >5-fold increase in paclitaxel levels within irradiated tumors in HVGGSSV-nab-paclitaxel-treated groups as compared with either nab-paclitaxel or SGVSGHVnab-paclitaxel at 72 hours. Both Lewis lung carcinoma and H460 lung carcinoma murine models showed significant tumor growth delay for HVGGSSV-nab-paclitaxel as compared with nab-paclitaxel, SGVSGHV-nab-paclitaxel,and saline controls. HVGGSSV-nab-paclitaxel treatment induced a significantly greater loss in vasculature in irradiated tumors compared with unirradiated tumors, nab-paclitaxel, SGVSGHV-nab-paclitaxel, and untreated controls.Conclusions: HVGGSSV-nab-paclitaxel was found to bind specifically to the tax-interacting protein-1 (TIP-1) receptor expressed in irradiated tumors, enhance bioavailability of paclitaxel, and significantly increase tumor growth delay as compared with controls in mouse models of lung cancer. Here we show that targeting nab-paclitaxel to radiation-inducible TIP-1 results in increased tumor-specific drug delivery and enhanced biological efficacy in the treatment of cancer. Clin Cancer Res; 16(20); 4968-77. ©2010 AACR.
Purpose-P-selectin expression is significantly increased in tumor microvasculature following exposure to ionizing radiation. The purpose of this study was to image radiation-induced P-selectin expression in vivo using optical imaging and gamma camera imaging in a heterotopic lung cancer model by using ScFv antibodies to P-selectin.Procedures-In vitro studies using endothelial cells were done using 3 Gy radiation and selected ScFv antibodies to P-selectin. In vivo studies were performed using Lewis lung carcinoma cells subcutaneously injected into the hind limbs of nude mice. Mice were treated with 6 Gy radiation and sham radiation 10 days post-inoculation. P-selectin expression was assessed with near-infrared imaging using Cy7 labeled antibody, and gamma camera imaging using 111 In-DTPA labeled antibody.Results-In vitro studies showed antibody binding to P-selectin in radiation treated endothelial cells. In vivo optical imaging and gamma camera imaging studies showed significant tumor-specific binding to P-selectin in irradiated tumors compared to unirradiated tumors.Conclusions-Optical imaging and gamma camera imaging are effective methods for visualizing in vivo targeting of radiation-induced P-selectin in lung tumors. This study suggests that fluorescentlabeled and radiolabeled ScFv antibodies can be used to target radiation-induced P-selectin for the tumor-specific delivery of therapeutic drugs and radionuclides in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.