Applications involving high-power ultrasound are expanding rapidly as ultrasonic intensification opportunities are identified in new fields. This is facilitated through new technological developments and an evolution of current systems to tackle challenging problems. It is therefore important to continually update both the scientific and commercial communities on current system performance and limitations. To achieve this objective, this paper addresses two key aspects of high-power ultrasonic systems. In the first part, the review of high-power applications focuses on industrial applications and documents the developing technology from its early cleaning applications through to the advanced sonochemistry, cutting, and water treatment applications used today. The second part provides a comprehensive overview of measurement techniques used in conjunction with high-power ultrasonic systems. This is an important and evolving field which enables design and process engineers to optimize the behavior and/or operation of key metrics of system performance, such as field distribution or cavitation intensity.
This paper describes a theoretical investigation into the behaviour of anisotropic welds under phased array inspection procedures using a 128 element linear array. Two advanced inspection techniques are simulated, and their suitability compared. A finite element (FE) model, configured in PZFlex, is used to represent both the variations in crystal orientation found in a typical anisotropic weld, and also the linear array configuration. Firstly, through transmission spectra of the weld are used to determine the optimum operating frequency and configuration of the array in order to detect a 3mm SDH in the weld. Next, the Full Matrix Capture (FMC) technique is simulated, and an image of the weld constructed using the Total Focussing Method (TFM). This is accomplished by transmitting on each element sequentially, while receiving on the remaining 127 elements. This approach provides spatial averaging over the weld area, reducing the distortion caused by the anisotropic media. Finally, Time Reversal Acoustic (TRA) methods were employed to coherently focus the array at the defect and compensate for the elemental timing variations caused by the complex medium. Results illustrate the potential for inspecting anisotropic welds when using correctly designed arrays and implementing novel inspection procedures.
It is possible to produce a high-performance, flexible 1-3 connectivity piezoelectric ceramic composite with conventional methods but the process is difficult and time-consuming. Extensive finite element modeling was used to design a piezocomposite structure which incorporated randomly positioned piezoceramic fibers in a polymer matrix. Simple manufacturing techniques were developed which resulted in the production of large numbers of fully populated fiber composites that offered performance comparable with a conventional 1-3 piezocomposite. A modified process facilitated the production of efficient fiber piezocomposite elements separated by polymer channels which conformed to a highly flexible (13 mm radius of curvature), 2-D matrix array configuration. This arrangement has been termed a Composite Element Composite Array Transducer, or CECAT. These devices were evaluated in terms of their impedance spectra, pulse-echo response, and surface displacement characteristics. The random piezoceramic fiber arrangements showed comparable sensitivity and bandwidth to periodic devices while minimizing the parasitic interpillar modes associated with periodic structures. Investigations have indicated that CECAT arrays constructed with 250 microm diameter fibers can be operated at frequencies of up to 3 MHz and transducers incorporating 10 microm diameter fibers can extend the frequency range above 6 MHz. Conversely, improved low-frequency devices can be produced with taller pillars than possible with conventional manufacturing techniques.
Abstract. Advances in manufacturing techniques and materials have led to an increase in the demand for reliable and robust inspection techniques to maintain safety critical features. The application of modelling methods to develop and evaluate inspections is becoming an essential tool for the NDE community. Current analytical methods are inadequate for simulation of arbitrary components and heterogeneous materials, such as anisotropic welds or composite structures. Finite element analysis software (FEA), such as PZFlex, can provide the ability to simulate the inspection of these arrangements, providing the ability to economically prototype and evaluate improved NDE methods. FEA is often seen as computationally expensive for ultrasound problems however, advances in computing power have made it a more viable tool. This paper aims to illustrate the capability of appropriate FEA to produce accurate simulations of ultrasonic array inspectionsminimizing the requirement for expensive test-piece fabrication. Validation is afforded via corroboration of the FE derived and experimentally generated data sets for a test-block comprising 1D and 2D defects. The modelling approach is extended to consider the more troublesome aspects of heterogeneous materials where defect dimensions can be of the same length scale as the grain structure. The model is used to facilitate the implementation of new ultrasonic array inspection methods for such materials. This is exemplified by considering the simulation of ultrasonic NDE in a weld structure in order to assess new approaches to imaging such structures.
Abstract-Material-resolved X-ray imaging or colour X-ray imaging is of a great interest for many applications ranging from physics, industry to medicine and biology. X-ray Àuorescence offers a method for producing such images if the energies and positions of origin of the Àuorescent photons can be adequately resolved.This paper describes application of the Medipix2 single photon counting imaging detector (256 256 pixels each of 55 55 m size) for this purpose.The basics of the method are explained including details of the energy calibration of all 65 k individual pixels. The effect of charge sharing is discussed and a method for its characterisation based on numerical calculation presented. The charge sharing calculation is then used to generate the Medipix2 detector response matrix, which is subsequently used for analysis of measured spectra in detector pixels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.