Enzymatically polymerized hydroquinone, PHQ, was applied for polymer-coated electrode whose surface was further modified with 5 0 -amine dodecamer DNAs (capture probe DNA, CP-DNA) by taking advantage of Michael reaction. The film-forming property of PHQ on graphite substrate surfaces was confirmed to be satisfactory by AFM imaging. Cyclic voltammetric (CV) measurements showed that the PHQ-modified graphite electrode gave well-defined redox waves showing characteristics for surface process. The pH dependence of the formal potential, E 1/2 , suggested that the electrode reaction occurred by two-proton and two-electron mechanism (À59 mV per a pH decade). CVs also gave the specific amount of PHQ adsorption of 0.52 or 0.83 nmol cm À2 (monomer unit) for the different electrode preparations. This was indicative of two-or three-monolayer adsorption of PHQ. For applications of gene detection, the immobilization reaction including the CP-DNA hybridization was studied by microgravimetric analysis using a quartz-crystal microbalance (QCM). Summaries for the two different runs were 1.01 and 0.69 nmol cm À2 (monomer unit) for PHQ adsorption on gold surfaces, 0.19 and 0.15 nmol cm À2 for CP-DNA attachment on the PHQ/Au, and 0.14 and 0.11 nmol cm À2 for hybridization with the complementary DNA on the CP-DNA/PHQ/Au, respectively. Importantly, monitoring of the series of the experiments were possible by measuring the voltammetric properties of the electrode; the distinct redox waves due to PHQ-electrode reaction are suppressed upon immobilizing of the CP-DNA, and its hybridization further suppressed the redox activity. Neither treating of the PHQ-electrode with native DNAs nor treating of CP-DNA/PHQ-electrode with non-target DNA gave no noticeable responses. A possible mechanism for the electrode response was discussed briefly based on electrochemical QCM measurements. We think these observations are important as the basis of DNA hybridization sensor that enables totally, label-free electrochemical detection of the target DNA. r
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.