1. Triceps surae and plantaris (Pl) motoneurons were recorded intracellularly in chloralose or pentobarbital sodium (Nembutal)-anesthetized cats during unfused tetanic contractions of gastrocnemius medialis muscle (GM) produced by stimulating either a cut branch of the GM nerve or the muscle directly. 2. In alpha-motoneurons, during a series of GM twitches at 10/s, contraction-induced inhibitory potentials, probably the result of input from Golgi tendon organs (autogenetic inhibition), rapidly subsided before the end of the series. In contrast, excitatory potentials, probably the result of the activation of spindle primary endings during relaxation from contraction, persisted. 3. In gastrocnemius lateralis-soleus (GL-S) and Pl motoneurons lacking an excitatory connection with Ia afferents from GM, the sustained contraction of this muscle also elicited a declining inhibition. Rapid reduction of contraction-induced autogenetic inhibition was also observed in homonymous gamma-motoneurons. During unfused tetanic contractions lasting 0.5-4s, inhibitory potentials quickly subsided, but an abrupt increase in contractile force elicited a new series of decreasing inhibitory potentials. 4. The assumption that the inhibition induced by GM unfused tetanic contractions was due to activation of homonymous Ib afferents was supported by observations of the effects of electrical stimulation of the GM nerve. In Pl motoneurons lacking an excitatory connection with Ia afferents from GM, repetitive trains applied to the GM nerve, at a strength just above threshold for group I fibers, elicited rapidly declining inhibitory potentials similar to those produced by GM contraction. It was verified that during such stimulation, the amplitude of the group I afferent volleys did not decrease. 5. Reduction of contraction-induced Ib inhibition during sustained GM contraction was still present after a low spinalization of the preparation. As GM tendon organ discharges were verified to persist throughout prolonged contractions, the observed decline of autogenetic inhibition is likely to depend on a spinal mechanism, possibly involving presynaptic inhibition of Ib afferents and/or mutual inhibition of Ib-inhibitory interneurons.
The aim of the present study was to investigate whether ultrastructural features can be used as a guide to identify alpha- and gamma-motoneurons among the intermediate-size neurons of the peroneal motor nuclei. The peroneus brevis and peroneus tertius muscles of adult cats were injected with horseradish peroxidase, and motoneurons labeled by retrograde axonal transport were examined by electron microscopy. In both nuclei, the distributions of cell-body diameters, measured in the light microscope, were bimodal covering the range of 28-84 microns, with a trough around 50 microns. The sample of 25 motoneurons selected for the ultrastructural study included not only large (presumed alpha) and small (presumed gamma) neurons but also intermediate-size cell bodies with diameters in the 40-60 microns range. For each motoneuron, 2-5 profiles were reconstructed from ultrathin sections taken at 6-8 microns intervals. Synaptic boutons were counted and their lengths of apposition were measured. On the basis of three criteria, namely: (1) bouton types present on the membrane, (2) percentage of membrane length covered by synapses, and (3) the aspect of the nucleolus, all the examined motoneurons, including those with intermediate sizes, fell into one of two categories. Fourteen motoneurons, with cell-body diameters in a range of 55-84 microns, were contacted by all types of boutons (mainly S-type with spherical vesicles, F-type with flattened vesicles, and C-type with subsynaptic cistern); the synaptic covering of the somatic membrane was over 40% and the nucleus contained a vacuolated nucleolus. These were considered alpha-motoneurons. Eleven motoneurons, with only S and F boutons, a synaptic covering under 30%, a compact nucleolus and a cell-body diameter ranging between 28 and 50 microns, were considered gamma-motoneurons. No other combination of the three criteria was observed. These results show that unequivocal distinction of alpha- and gamma-motoneurons is possible in the peroneal nuclei, on the basis of morphological differences independent of cell-body size.
SUMMARY1. Intra-axonal records from the intraspinal course of Ib and Ia afferent fibres innervating the gastrocnemius medialis muscle were obtained in chloralose or Nembutal-anaesthetized cats during submaximal contractions of the muscle.2. Afferent fibres in continuity with their muscle of origin were functionally identified by their responses to muscle stretch or contraction.3. In six out of eight lb afferents, primary depolarizations (PADs) were recorded during contraction. They were independent of the presence of orthodromic impulses fired by tendon organs.4. These observations support the assumption that the reduction of I b autogenetic inhibition in homonymous and synergic motoneurones during GM contractions is due to presynaptic inhibition of transmission in lb pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.