Chest X-Ray (CXR) images provide most anatomical details and the abnormalities on a 2D plane. Therefore, a 2D view of the 3D anatomy is sometimes sufficient for the initial diagnosis. However, close to fourteen commonly occurring diseases are sometimes difficult to identify by visually inspecting the images. Therefore, there is a drift toward developing computer-aided assistive systems to help radiologists. This paper proposes a deep learning model for the classification and localization of chest diseases by using image-level annotations. The model consists of a modified Resnet50 backbone for extracting feature corpus from the images, a classifier, and a pixel correlation module (PCM). During PCM training, the network is a weight-shared siamese architecture where the first branch applies the affine transform to the image before feeding to the network, while the second applies the same transform to the network output. The method was evaluated on CXR from the clinical center in the ratio of 70:20 for training and testing. The model was developed and tested using the cloud computing platform Google Colaboratory (NVidia Tesla P100 GPU, 16 GB of RAM). A radiologist subjectively validated the results. Our model trained with the configurations mentioned in this paper outperformed benchmark results.
Glaucoma is one of the leading causes of permanent blindness in the world. It is caused due to an increase in the intraocular pressure within the eye that harms the optic nerve. People suffering from Glaucoma often do not notice any changes in their vision in the early stages. However, as it progresses, Glaucoma usually leads to vision loss that is irreversible in many cases. Thus, early diagnosis of this eye disease is of critical importance. The fundus image is one of the most used diagnostic tools for glaucoma detection. However, drawing accurate insights from these images requires them to be manually analyzed by medical experts, which is a time-consuming process. In this work, we propose a parameter-efficient AlterNet-K model based on an alternating design pattern, which combines ResNets and multi-head self-attention (MSA) to leverage their complementary properties to improve the generalizability of the overall model. The model was trained on the Rotterdam EyePACS AIROGS dataset, comprising 113,893 colour fundus images from 60,357 subjects. The AlterNet-K model outperformed transformer models such as ViT, DeiT-S, and Swin transformer, standard DCNN models including ResNet, EfficientNet, MobileNet and VGG with an accuracy of 0.916, AUROC of 0.968 and F1 score of 0.915. The results indicate that smaller CNN models combined with self-attention mechanisms can achieve high classification accuracies. Small and compact Resnet models combined with MSA outperform their larger counterparts. The models in this work can be extended to handle classification tasks in other medical imaging domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.