G. 1999 (March): Clay-mineral distribution in surface sediments of the Eurasian kctic Ocean and continental margin as indicator for source areas and transport pathwaysa synthesis. Boreas, Vol. 28, pp. 215-233. Oslo. ISSN 0300-9483. Clay-mineral distributions in the Arctic Ocean and the adjacent Eurasian shelf areas are discussed to identify source areas and transport pathways of terrigenous material in the Arctic Ocean. The main clay minerals in Eurasian Arctic Ocean sediments are illite and chlorite. Smectite and kaolinite occur in minor amounts in these sediments, but show strong variations in the shelf areas. These two minerals are therefore reliable in reconstructions of source areas of sediments from the Eurasian Arctic. The Kara Sea and the western part of the Laptev Sea are enriched in smectite, with highest values of up to 70% in the deltas of the Ob and Yenisey rivers. Illite is the dominant clay mineral in all the investigated sediments except for parts of the Kara Sea.The highest concentrations with more than 70% illite occur in the East Siberian Sea and around Svalbard. Chlorite represents the clay mineral with lowest concentration changes in the Eastern Arctic, ranging between 10 and 25%. The main source areas for kaolinite in the Eurasian Arctic are Mesozoic sedimentary rocks on Franz-Josef Land islands. Based on clay-mineral data, transport of the clay fraction via sea ice is of minor importance for the modern sedimentary budget in the Arctic basins.
A seafloor mud volcano north of Norway is presenting researchers with an uncommon example of venting and is raising important questions. Seafloor aqueous vents, gas vents, mud volcanoes, and mud diapirs are found in a variety of geological settings. However, scientists did not expect to discover venting at the northern site, now known as the Haakon Mosby Mud Volcano (HMMV). It is considered especially unusual because of its Arctitc Location (72°N), its development largely within glacial marine sediments, and its lack of association either with salt tectonics or with plate subduction. Further, the volcano is posing questions for investigators about the relationship of methane generation and mud volcanism to thick, rapidly deposited sediments; sediment failure; and gas hydrates (GH).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.