Over the last decades scientists have faced growing requirements in novel methods of fast and sensitive analysis of antioxidant status of biological systems, spin redox probing and spin trapping, investigation of molecular dynamics, and of convenient models for studies of photophysical and photochemical processes. In approaching this problem, methods based upon the use of dual chromophore-nitroxide (CN) compounds have been suggested and developed. A CN consists of two molecular sub-functionality (a chromophore and a stable nitroxide radical) tethered together by spacers. In the dual compound the nitroxide is a strong intramolecular quencher of the fluorescence from the chromophore fragment. Reduction to hydroxylamine, oxidation of the nitroxide fragment or addition of an active radical yield the fluorescence increase and the parallel decay of the fragment electron spin resonance (ESR) signal. At certain conditions the dual molecules undergo photomagnetic switching and form excited state multi-spin systems. These unique properties of CN were intensively exploited as the basis for several methodologies, which include molecular probing, modeling intramolecular photochemical and photophysical processes, and construction of new magnetic materials.
The photoreduction, without reductant dithionite, of N2 to NH3 or acetylene to ethylene catalysed by nitrogenase in the presence of Mg2+. ATP, eosin and NADH in the light has been established. There is an optimum NADH concentration for each particular eosin concentration. When the ratio of the iron protein component of nitrogenase from Azotobacter vinelandii (Av2)/the molybdenum-iron protein component of nitrogenase from A. vinelandii (Av1) is equal to 3 for 4 x 10(-5) M eosin the optimum NADH concentration is 5 x 10(-4) M. The rate of photoreduction (per one electron) of acetylene or N2 under identical conditions was shown to be similar. The photoreductant-dependent ATPase activity, in the presence of a given photochemical system in the light, was revealed. Eosin is shown to be the inhibitor of the coupling site. Concentrations of 8 x 10(-6) -1 x 10(-4) M eosin do not inhibit the ATPase activity. The inhibition of substrate-reduction activity depends on the ratio of the nitrogenase components. Under conditions where the Av2/Av1 ratio is equal to 1 the rate of photochemical reduction is higher than in the presence of dithionite: the total electron flux through nitrogenase being increased 2.2-fold. We suggest that in this case the nitrogenase complex (1:1) works without dissociation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.