An increase in the service life of electrical products from copper and its alloys is directly related to an increase in the wear resistance of materials. Structural refinement and alloying with cadmium are known to have a positive effect on the strength characteristics and wear resistance of copper, which makes it possible, with a Cd content of 1% by weight, to increase the wear resistance of copper several times, but cadmium is considered an environmentally unsafe element. In this regard, the paper presents the results of studies of a widely used Cu-Cr-Zr alloy system in the ultrafine-grained (UFG) state, micro-alloyed with cadmium (0.2%, weight), in order to improve physical, mechanical, and operational properties, as well as environmental safety. Severe plastic deformation, providing structure refinement to ~150 nm, and microalloying with cadmium of a Cu-Cr-Zr system alloy, after a complete processing cycle, provides a tensile strength of 570±10 MPa and 67% electrical conductivity. At the same time, the abrasion resistance increases by 12 and 35% relative to the industrial systems Cu-Cd and Cu-Cr-Zr, respectively. The obtained characteristics are very promising for improving the operational properties of continuous welding tips, collector plates, and contact wires operating under conditions of intense wear.
The problem of the real existence of the electroplastic effect during deformation of metallic materials of different nature is still relevant. At the same time, the influence of structure refinement is not considered enough. In this work, the deformation behavior of ultrafine-grained (UFG) titanium Grade 4 is compared with that of coarse-grained (CG) titanium under tension with pulse current of the low duty cycle. The deformation curves of both structure states are presented for different regimes of pulsed current and thermal heating from an external source. Structure studies by optical and scanning electron microscopy, as well as microhardness measurements have been carried out. It is shown that Grade 4 titanium under tension accompanied by pulsed current exhibits electroplastic effect (EPE) in the form of a flow stress reduction. EPE in UFG state is much stronger than in CG state. An increase in the density and duration of the current pulse leads to a multiple decrease in the flow stresses in CG and UFG titanium. The contribution in the flow stress reduction from heating by an external source was less than that from tension with pulse current at the same temperatures. The impact of pulsed current during tension does not influence microhardness and grain size.
Работа посвящена изучению влияния структуры и размеров зерна на изменение микрорельефа и оптических характеристик образцов зеркал из медных сплавов с существенно различными размерами зёрен при бомбардировке их ионами дейтериевой плазмы. Исследование проведено в рамках решения задачи выбора материала обращённых к плазме зеркал для оптических методов диагностики плазмы в термоядерном реакторе. На основании комплексных исследований структурных особенностей поверхностного слоя образцов зеркал из низколегированных медно-хромовых сплавов сделан вывод об определяющей роли размера зерна на их поведение при воздействии дейтериевой плазмы. Ключевые слова: хромо-циркониевые медные сплавы, первое зеркало, оптические свойства, ионное распыление.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.