The FLUKA Monte Carlo code is used extensively at CERN for all beam-machine interactions, radioprotection calculations and facility design of forthcoming projects. Such needs require the code to be consistently reliable over the entire energy range (from MeV to TeV) for all projectiles (full suite of elementary particles and heavy ions). Outside CERN, among various applications worldwide, FLUKA serves as a core tool for the HIT and CNAO hadron-therapy facilities in Europe. Therefore, medical applications further impose stringent requirements in terms of reliability and predictive power, which demands constant refinement of sophisticated nuclear models and continuous code improvement. Some of the latest developments implemented in FLUKA are presented in this paper, with particular emphasis on issues and concerns pertaining to CERN and medical applications.
I.Available online at www.sciencedirect.com Nuclear Data Sheets 120 (2014) 211-214 0090-3752/
We report on the first measurement of the spin-dependent structure function g1d of the deuteron in the deep inelastic scattering of polarised muons off polarised deuterons, in the kinematical range 0.006
We present the final results of the spin asymmetries A 1 and the spin structure functions g 1 of the proton and the deuteron in the kinematic range 0.0008ϽxϽ0.7 and 0.2ϽQ 2 Ͻ100 GeV 2 . For the determination of A 1 , in addition to the usual method which employs inclusive scattering events and includes a large radiative background at low x, we use a new method which minimizes the radiative background by selecting events with at least one hadron as well as a muon in the final state. We find that this hadron method gives smaller errors for xϽ0.02, so it is combined with the usual method to provide the optimal set of results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.