The aim of this review is to give a comprehensive overview of the current knowledge on plant metabolites of mycotoxins, also called masked mycotoxins. Mycotoxins are secondary fungal metabolites, toxic to human and animals. Toxigenic fungi often grow on edible plants, thus contaminating food and feed. Plants, as living organisms, can alter the chemical structure of mycotoxins as part of their defence against xenobiotics. The extractable conjugated or non-extractable bound mycotoxins formed remain present in the plant tissue but are currently neither routinely screened for in food nor regulated by legislation, thus they may be considered masked. Fusarium mycotoxins (deoxynivalenol, zearalenone, fumonisins, nivalenol, fusarenon-X, T-2 toxin, HT-2 toxin, fusaric acid) are prone to metabolisation or binding by plants, but transformation of other mycotoxins by plants (ochratoxin A, patulin, destruxins) has also been described. Toxicological data are scarce, but several studies highlight the potential threat to consumer safety from these substances. In particular, the possible hydrolysis of masked mycotoxins back to their toxic parents during mammalian digestion raises concerns. Dedicated chapters of this article address plant metabolism as well as the occurrence of masked mycotoxins in food, analytical aspects for their determination, toxicology and their impact on stakeholders.
Blue-green algae are found in lakes, ponds, rivers and brackish waters throughout the world. In case of excessive growth such as bloom formation, these bacteria can produce inherent toxins in quantities causing toxicity in mammals, including humans. These cyanotoxins include cyclic peptides and alkaloids. Among the cyclic peptides are the microcystins and the nodularins. The alkaloids include anatoxin-a, anatoxin-a(S), cylindrospermopsin, saxitoxins (STXs), aplysiatoxins and lyngbyatoxin. Both biological and chemical methods are used to determine cyanotoxins. Bioassays and biochemical assays are nonspecific, so they can only be used as screening methods. HPLC has some good prospects. For the subsequent detection of these toxins different detectors may be used, ranging from simple UV-spectrometry via fluorescence detection to various types of MS. The main problem in the determination of cyanobacterial toxins is the lack of reference materials of all relevant toxins. In general, toxicity data on cyanotoxins are rather scarce. A majority of toxicity data are known to be of microcystin-LR. For nodularins, data from a few animal studies are available. For the alkaloids, limited toxicity data exist for anatoxin-a, cylindrospermopsin and STX. Risk assessment for acute exposure could be relevant for some types of exposure. Nevertheless, no acute reference doses have formally been derived thus far. For STX(s), many countries have established tolerance levels in bivalves, but these limits were set in view of STX(s) as biotoxins, accumulating in marine shellfish. Official regulations for other cyanotoxins have not been established, although some (provisional) guideline values have been derived for microcystins in drinking water by WHO and several countries.
Mycotoxins are fungal metabolites commonly occurring in food, which pose a health risk to the consumer. Maximum levels for major mycotoxins allowed in food have been established worldwide. Good agricultural practices, plant disease management, and adequate storage conditions limit mycotoxin levels in the food chain yet do not eliminate mycotoxins completely. Food processing can further reduce mycotoxin levels by physical removal and decontamination by chemical or enzymatic transformation of mycotoxins into less toxic products. Physical removal of mycotoxins is very efficient: manual sorting of grains, nuts, and fruits by farmers as well as automatic sorting by the industry significantly lowers the mean mycotoxin content. Further processing such as milling, steeping, and extrusion can also reduce mycotoxin content. Mycotoxins can be detoxified chemically by reacting with food components and technical aids; these reactions are facilitated by high temperature and alkaline or acidic conditions. Detoxification of mycotoxins can also be achieved enzymatically. Some enzymes able to transform mycotoxins naturally occur in food commodities or are produced during fermentation but more efficient detoxification can be achieved by deliberate introduction of purified enzymes. We recommend integrating evaluation of processing technologies for their impact on mycotoxins into risk management. Processing steps proven to mitigate mycotoxin contamination should be used whenever necessary. Development of detoxification technologies for high-risk commodities should be a priority for research. While physical techniques currently offer the most efficient post-harvest reduction of mycotoxin content in food, biotechnology possesses the largest potential for future developments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.