Thermo-hydro-mechanical responses around a cylindrical cavity drilled or excavated in a low-permeability formation are studied when the cavity is subjected to a time-dependent thermal loading. The cavity is considered backfilled after it is supported by casing or lining. Solutions of temperature, pore water pressure, stress, and displacement responses are analytically formulated based on Biot's consolidation theory with the assumption that the backfilling material, supporting material, and surrounding low-permeability formation are poroelastic media. The solution is expressed in Laplace space, and numerical inversion techniques are used to find field variables in the real-time domain. After the solution is verified with the numerical results, it is applied in a large-scale in situ heating test -PRACLAY heating testfor a predictive reference calculation and an extensive parametric study. Another medium-scale in situ heating test -ATLAS III heating testis also analyzed using the solution, which provides reasonable agreement with measurements. The new analytical solution proves to be a convenient tool for a good understanding of the resulting coupled thermo-hydro-mechanical behavior and is therefore valuable for the interpretation of measured data in engineering practices and for a rational design of potential radioactive waste repositories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.