Six factorial experiments, each lasting 3 years, were carried out to determine the effects of N, P and K on herbage cut five times each year.Clover almost disappeared with the 87 lb. N treatment and none survived with the 174and 348 lb. dressings. N increased the proportions of rye-grass and cocksfoot in the sward. P had no influence on botanical composition. K usually increased the clover content in the absence of, but had practically no effect in the presence of, N.
The paper reports the results for six factorial experiments carried out over a period of 3 years, and designed to measure the effects of nitrogen, phosphate and potash on the yield of dry matter and to determine the effect of nitrogen on the phosphate and potash requirements of grass being cut five times per annum for conservation.Heavy dressings of nitrogen reduced the percentage of dry matter in the fresh herbage, but produced a very large increase in the yield of dry matter. There were quite large variations in the response to this plant food, but 348 lb. N per acre per annum practically doubled the yield and generally the response curves were substantially linear.The response to nitrogen depended on an adequate supply of potash and at five of the centres there were very large interactions between these two nutrients. The need for potash was greatest at the highest nitrogen rate and was much greater in the second and third than in the first year of the experiments.At the highest nitrogen rate some of the responses to potash were very large. The yields of dry matter showed no large or consistent differences between applying 336 lb. K2O in one dressing during the winter months or applying this amount in five equal dressings, one for each cut. The results demonstrated the ability of the soils to supply potash and showed that the regular cutting and removal of herbage, especially if heavy dressings of nitrogen were applied, exhausted the potash reserves in the soil.Phosphate had practically no effect on the yield of dry matter either in the presence or absence of nitrogen.With adequate potash the production of dry matter per lb. of fertilizer nitrogen was practically independent of rate and the overall mean results are between 14·0 and 15·7 lb. In the absence of fertilizer potash there was a very large effect of rate: 15·0 lb. dry matter per acre was produced per lb. N with the 87 lb. N per annum treatment, 13·7 lb. with 174 lb. N and 10·0 lb. with the 348 lb. N treatment.Approximately 70–75% of the annual production was obtained before the end of July. Thus 1 lb. of fertilizer nitrogen produced considerably more dry matter per acre during May, June and July than later in the season.
The benefits to establishment and growth of white clover cvs Aberystwyth S.184 and Grasslands Huia of inoculation with three strains of Rhizobium trifolii, using the peat or liquid inoculum techniques, were investigated during 1975-8 on improved hill soils ranging from brown earth through dry and wet peaty podzol to deep peat.Inoculation induced positive response in either number of seedlings, plant cover or dry-matter production in 18 out of 139 comparisons, had no effect in 118 and produced a negative response in three. Most of the positive responses to inoculation were at sites with wet peaty podzol or deep peat soils but of the five sites where increase in clover D.M. production was found in the first harvest year one was a brown earth. The positive agronomic responses occurred only when the proportion of plants with nodules was high and where a substantial proportion ( > 50 %) of the latter contained introduced Rhizobium strains at least in the year of sowing. The three negative responses were in numbers of seedlings on one brown earth and two dry peaty podzol soils and with the Huia cultivar only. Despite lack of statistical significance at individual sites the dominant overall trend was for inoculation to enhance seedling establishment and the early growtli of white clover in all soil types.On one brown earth and one dry peaty podzol soil there was some evidence that spraying the Rhizobium on to emerging white clover seedlings was more beneficial, at least in microbiological terms, than the customary peat inoculum procedure.The incorporation of even a small amount of nitrogen (30 kg/ha) into the seed bed at the time of sowing adversely affected germination, establishment and growth of white clover in some soils. Sometimes the effects of this nitrogen persisted into the first harvest year.
The principles of surface seeding as they apply to conditions in the north of Scotland are described and are illustrated by results from trials. The types of land and vegetation most suited to exploitation by surface seeding are indicated, and the need to consider the improvement of rough grazings in relation to a farm as a whole is stressed.Ploughing is not necessary but some seed bed preparation is desirable, except on ideal sites. Investigations show the importance of suitable seeds mixtures in association with adequate lime and fertilizer applications in both the establishment and maintenance of these swards. Reference is made to new techniques such as lime-coated seed and chemical pre-treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.