Ischemic disorders of the heart can cause an irreversible loss of cardiomyocytes resulting in a substantial decrease of cardiac output. The therapy of choice is heart transplantation, a technique that is hampered by the low number of donor organs. In the present study, we describe the specific labeling, rapid but gentle purification and characterization of cardiomyocytes derived from mouse pluripotent embryonic stem (ES) cells. To isolate the subpopulation of ventricular-like cardiomyocytes, ES cells were stable transfected with the enhanced green fluorescent protein (EGFP) under transcriptional control of the ventricular-specific 2.1 kb myosin light chain-2v (MLC-2v) promoter and the 0.5 kb enhancer element of the cytomegalovirus (CMV(enh).). First fluorescent cells were detected at day 6 + 8 of differentiation within EBs. Four weeks after initiation of differentiation 25% of the cardiomyocyte population displayed fluorescence. Immunohistochemistry revealed the exclusive cardiomyogenic nature of EGFP-positive cells. This was further corroborated by electrophysiological studies where preferentially ventricular phenotypes, but no pacemaker-like cardiomyocytes, were detected among the EGFP-positive population. The enzymatic digestion of EBs, followed by Percoll gradient centrifugation and fluorescence-activated cell sorting, resulted in a 97% pure population of cardiomyocytes. Based on this study, ventricular-like cardiomyocytes can be generated in vitro from EBs and labeled using CMV(enh)./MLC-2v-driven marker genes facilitating an efficient purification. This method may become an important tool for future cell replacement therapy of ischemic cardiomyopathy especially after the proof of somatic differentiation of human ES cells in vitro.
In contrast to terminally differentiated cardiomyocytes, relatively little is known about the characteristics of mammalian cardiac cells before the initiation of spontaneous contractions (precursor cells). Functional studies on these cells have so far been impossible because murine embryos of the corresponding stage are very small, and cardiac precursor cells cannot be identified because of the lack of cross striation and spontaneous contractions.In the present study, we have used the murine embryonic stem (ES, D3 cell line) cell system for the in vitro differentiation of cardiomyocytes. To identify the cardiac precursor cells, we have generated stably transfected ES cells with a vector containing the gene of the green fluorescent protein (GFP) under control of the cardiac α-actin promoter. First, fluorescent areas in ES cell–derived cell aggregates (embryoid bodies [EBs]) were detected 2 d before the initiation of contractions. Since Ca2+ homeostasis plays a key role in cardiac function, we investigated how Ca2+ channels and Ca2+ release sites were built up in these GFP-labeled cardiac precursor cells and early stage cardiomyocytes. Patch clamp and Ca2+ imaging experiments proved the functional expression of the L-type Ca2+ current (ICa) starting from day 7 of EB development. On day 7, using 10 mM Ca2+ as charge carrier, ICa was expressed at very low densities 4 pA/pF. The biophysical and pharmacological properties of ICa proved similar to terminally differentiated cardiomyocytes. In cardiac precursor cells, ICa was found to be already under control of cAMP-dependent phosphorylation since intracellular infusion of the catalytic subunit of protein kinase A resulted in a 1.7-fold stimulation. The adenylyl cyclase activator forskolin was without effect. IP3-sensitive intracellular Ca2+ stores and Ca2+-ATPases are present during all stages of differentiation in both GFP-positive and GFP-negative cells. Functional ryanodine-sensitive Ca2+ stores, detected by caffeine-induced Ca2+ release, appeared in most GFP-positive cells 1–2 d after ICa. Coexpression of both ICa and ryanodine-sensitive Ca2+ stores at day 10 of development coincided with the beginning of spontaneous contractions in most EBs.Thus, the functional expression of voltage-dependent L-type Ca2+ channel (VDCC) is a hallmark of early cardiomyogenesis, whereas IP3 receptors and sarcoplasmic Ca2+-ATPases are expressed before the initiation of cardiomyogenesis. Interestingly, the functional expression of ryanodine receptors/sensitive stores is delayed as compared with VDCC.
In adult mammalian cardiomyocytes, stimulation of muscarinic receptors counterbalances the beta-adrenoceptor-mediated increase in myocardial contractility and heart rate by decreasing the L-type Ca2+ current (ICa) (1, 2). This effect is mediated via inhibition of adenylyl cyclase and subsequent reduction of cAMP-dependent phosphorylation of voltage-dependent L-type Ca2+ channels (3). Little is known, however, about the nature and origin of this pivotal inhibitory pathway. Using embryonic stem cells as an in vitro model of cardiomyogenesis, we found that muscarinic agonists depress ICa by 58 +/-3% (n=34) in early stage cardiomyocytes lacking functional beta-adrenoceptors. The cholinergic inhibition is mediated by the nitric oxide (NO)/cGMP system since it was abolished by application of NOS inhibitors (L-NMA, L-NAME), an inhibitor of the soluble guanylyl cyclase (ODQ), and a selective phosphodiesterase type II antagonist (EHNA). The NO/cGMP-mediated ICa depression was dependent on a reduction of cAMP/protein kinase A (PKA) levels since application of the catalytic subunit of PKA or of the PKA inhibitor PK) prevented the carbachol effect. In late development stage cells, as reported for ventricular cardiomyocytes (2, 4), muscarinic agonists had no effect on basal ICa but antagonized beta-adrenoceptor-stimulated ICa by 43 +/-4% (n=16). This switch in signaling pathways during development is associated with distinct changes in expression of the two NO-producing isoenzymes, eNOS and iNOS, respectively. These findings indicate a fundamental role for NO as a signaling molecule during early embryonic development and demonstrate a switch in the signaling cascades governing ICa regulation.
Activity of cardiac pacemaker cells is caused by a balanced interplay of ion channels. However, it is not known how the rhythmic beating is initiated during early stages of cardiomyogenesis, when the expression of ion channels is still incomplete. Based on the observation that earlystage embryonic stem cell-derived cardiomyocytes continuously contracted in high extracellular K ؉ solution, here we provide experimental evidence that the spontaneous activity of these cells is not generated
beta-Adrenergic modulation of the L-type Ca2+ current (ICaL) was characterized for different developmental stages in murine embryonic stem cell-derived cardiomyocytes using the whole-cell patch-clamp technique at 37 degreesC. Cardiomyocytes first appeared in embryonic stem cell-derived embryoid bodies grown for 7 days (7d). ICaL was insensitive to isoproterenol, forskolin, and 8-bromo-cAMP in very early developmental stage (VEDS) cardiomyocytes (from 7+1d to 7+2d) but highly stimulated by these substances in late developmental stage (LDS) cardiomyocytes (from 7+9d to 7+12d), indicating that all signaling cascade components became functionally coupled during development. In early developmental stage (EDS) cells (from 7+3d to 7+5d), the stimulatory response to forskolin and 8-bromo-cAMP was relatively weak. The forskolin effect was strongly augmented by ATP-gamma-S. At this stage, basal ICaL was stimulated by the nonselective phosphodiesterase (PDE) inhibitor isobutylmethylxanthine, by PDE inhibitors selective for the PDE II, III, and IV isoforms, as well as by the phosphatase inhibitor okadaic acid. Stimulation of ICaL by the catalytic subunit of the cAMP-dependent protein kinase A (PKA) was found to be similar (about 3 times) throughout development and in adult mouse ventricular cardiomyocytes, indicating that no structural changes of the Ca2+ channel related to phosphorylation occurred during development. ICaL was stimulated by isoproterenol in the presence of a PKA inhibitor and GTP-gamma-S in LDS but not VEDS cardiomyocytes, suggesting the development of a membrane-delimited stimulatory pathway mediated through the stimulatory GTP binding protein, Gs. We conclude that uncoupling and/or low expression of Gs protein accounted for the ICaL insensitivity to beta-adrenergic stimulation in VEDS cardiomyocytes. Furthermore, in EDS cells at the 7+4d stage, the reduced beta-adrenergic response is due, at least in part, to high intrinsic PDE and phosphatase activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.