Under repeated stressing, cracks in a specimen of vulcanized rubber may propagate and lead to failure. It has been found, however, that below a critical severity of strain no propagation occurs in the absence of chemical corrosion. This severity defines a fatigue limit for repeated stressing below which the life can be virtually indefinite. It can be expressed as the energy per unit area required to produce new surface ( T 0 ), and is about 5 x 10 4 erg/cm 2 . In contrast with gross strength properties such as tear and tensile strength, T 0 does not correlate with the viscoelastic behaviour of the material and varies only relatively slightly with chemical structure. It is shown that T 0 can be calculated approximately by considering the energy required to rupture the polymer chains lying across the path of the crack. This energy is calculated from the strengths of the chemical bonds, secondary forces being ignored. Theory and experiment agree within a factor of 2. Reasons why T 0 and the gross strength properties are influenced by different aspects of the structure of the material are discussed.
Investigations of the dynamic cut growth behavior of vulcanized rubbers indicate that there is a minimum tearing energy at which mechanical rupture of chains occurs. The limiting value is characteristic of each vulcanizate, but is in the region of 0.05 kg./cm. The mechanical fatigue limit, below which the number of cycles to failure increases rapidly, is accurately predicted from this critical tearing energy. Characteristics of cut growth at low tearing energies, and effects of polymer, vulcanizing system, oxygen, and fillers on the critical tearing energy and fatigue limit are discussed.
The use of an energetics approach to treat various aspects of fatigue and fracture in elastomers is reviewed. Topics covered include tearing, crack growth and fatigue, tensile failure, oxidative effects, environmental cracking, cutting by sharp objects, abrasion, adhesion, friction (under circumstances where it is determined mainly by the making and breaking of contact), and cavitation. Application of the approach to service problems is also considered. Finally, physical and chemical factors affecting the crack growth characteristics—the material property linking various types of cohesive failure—are discussed.
synopsisInvestigations of the dynamic cut growth behavior of vulcanized rubbers indicate that there is a minimum tearing energy a t which mechanical rupture of chains occurs. The limiting value is characteristic of each vulcanizate, but is in the region of 0.05 kg./cm. The mechanical fatigue limit, below which the number of cycles to failure increases rapidly, is accurately predicted from this critical tearing energy. Characteristics of cut growth at low tearing energies, and effects of polymer, vulcanizing system, oxygen, and fillers on the critical tearing energy and fatigue limit are discussed.
SynopsisThe effect of crack tip sharpness on crack propagation in vulcanized rubbers has been studied. For very sharp cracks, tearing is found to occur on a small scale at very low energies not far above the threshold required for the onset of mechanical crack growth. The "small-scale" tearing energies show relatively little variation for rubbers that differ widely in tear strength as normally measured. Thus the latter property appears to be strongly influenced by variations in the ability of rubbers to promote tip blunting. The small-scale tear behavior is of relevance to other fracture phenomena, including cutting by sharp objects and tensile failure. Natural variations in tip sharpness occur during cyclic or time-dependent mechanical crack growth and influence the form of the crack growth characteristics.'
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.