The solid compound YNbO4:Eu3+ was synthesized by an usual solid state reaction and a non-conventional method of thermal decomposition of precursors. X-ray diffraction data of the monoclinic YNbO4 were used to identify the crystalline M-fergusonite phase. The symmetry of the luminescent Eu3+ site is very close to the D2 point symmetry. Spectroscopic quantities, namely, the 5D0-7F0/5D0-7F2 intensity ratio, the 5D0-7F1 transition splitting (DE0-1) and the intensity parameters Wl (l = 2, 4) were obtained from the emission spectrum at 77 K. In this sequence their values are 4.0 10-3, 103 cm-1, 18.0 10-20 cm2 and 3.2 10-20 cm2. Theoretical predictions are discussed in terms of the simple overlap model (SOM). The yttrium niobate structural data were taken as basis to obtain the spherical coordinates of the ligand oxygen atoms. The Eu-O distances being corrected in the frame of rare earth niobate series vs. atomic number. Their predicted values are 3.9 10-3, 85 cm-1, 14.9 10-20 cm2 and 3.0 10-20 cm2, assuming 0.9 as the effective charge of the ligand ions and their polarizabilities relative to the metal-ligand (M-L) distance as follows [R(Å)/ a(Å3)]: 2.443/0.6, 2.427/1.2, 2.370/2.3, 2.349/3.5
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.