ABSTRACT. Multidetector row computed tomography (MDCT) with its high spatial and temporal resolution has now become an established and complementary method for cardiac imaging. It can now be used reliably to exclude significant coronary artery disease and delineate complex coronary artery anomalies, and has become a valuable problem-solving tool. Our experience with MDCT imaging suggests that it is clinically useful for imaging the pericardium. It is important to be aware of the normal anatomy of the pericardium and not mistake normal variations for pathology. The pericardial recesses are visible in up to 44% of non-electrocardiogram (ECG)-gated MDCT images. Abnormalities of the pericardium can now be identified with increasing certainty on 64-detector row CT; they may be the key to diagnosis and therefore must not be overlooked. This educational review of the pericardium will cover different imaging techniques, with a significant emphasis on MDCT. We have a large research and clinical experience of ECG-gated cardiac CT and will demonstrate examples of pericardial recesses, their variations and a wide variety of pericardial abnormalities and systemic conditions affecting the pericardium. We give a brief relevant background of the conditions and reinforce the key imaging features. We aim to provide a pictorial demonstration of the wide variety of abnormalities of the pericardium and the pitfalls in the diagnosis of pericardial disease.
Pulmonary vein dimensions change significantly between end-systole and end-diastole, and the ostia of the superior pulmonary veins are potentially the most vulnerable to dimensional inaccuracies. ECG-gated cardiac CT may provide a more precise method of pulmonary venous dimensional measurement than non-gated techniques. Knowledge of change in pulmonary vein diameter offers interesting potential research into the effect of pulmonary vein function.
The introduction of transcatheter aortic valve insertion (TAVI) has transformed the care provided for patients with severe aortic stenosis. The uptake of this procedure is increasing rapidly, and clinicians from all disciplines are likely to increasingly encounter patients being assessed for or having undergone this intervention. Successful TAVI heavily relies on careful and comprehensive imaging assessment, before, during and after the procedure, using a range of modalities. This review outlines the background and development of TAVI, describes the nature of the procedure and considers the contribution of imaging techniques, both to successful intervention and to potential complications.
Computed tomography coronary angiography is increasingly used in imaging departments in the investigation of patients with chest pain and suspected coronary artery disease. Due to the routine use of heart rate controlling medication and the potential for very high radiation doses during these scans, there is a need for guidance on best practice for departments performing this examination, so the patient can be assured of a good quality scan and outcome in a safe environment. This article is a summary of the document on 'Standards of practice of computed tomography coronary angiography (CTCA) in adult patients' published by the Royal College of Radiologists (RCR) in December 2014.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.