A series of Ni-Fe alloys containing various levels of tungsten in solid solution have been prepared as a means to assess the influence of solid solution strengthening on the mechanical behavior of monolithic 70Ni-30Fe. In particular, 70Ni-30Fe alloys plus equilibrium concentrations of tungsten in solid solution nominally correspond to the compositions associated with the matrix-only portion of certain tungsten heavy alloys, that is, alloys comprised of a high volume fraction of nominally pure tungsten particles embedded within a minority Ni-Fe-W based matrix. The study shows that the working solubility of tungsten within the 70Ni-30Fe base composition increases slightly with temperature, from approximately 21 wt pct at room temperature to approximately 23 wt pct at 1400 °C. Increasing the level of tungsten in solid solution leads to increases in room-temperature yield strength, tensile strength, and ductility. In contrast, the deformation characteristics of the alloys, as quantified by the power-law workhardening exponent, n, and the strain-rate-sensitivity exponent, m, show little variation with tungsten solute concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.