Prostate cancer has become one of the most common malignancies worldwide. Although lacking in specificity its diagnosis is still based partially on the serumbased test for prostate-specific antigen. As its pathogenesis has not yet been deciphered, the ongoing search for new and more reliable biomarkers remains a challenge to stratify disease onset and progression. Matrix-assisted laser desorption/ ionization (MALDI)-Imaging is a promising technique to assist in this endeavor. It delivers accurate mass spectrometric information of the sample's proteins and enables the visualization of the spatial distribution of protein expression profiles and correlation of the information with the histomorphological features of the same tissue section. This study describes the analysis of 22 prostate sections (11 with and 11 without prostate cancer) by MALDI-Imaging. Specific protein expression patterns were obtained for normal and cancerous regions within the tissue sections. Applying a 'support vector machine' algorithm to classify the cancerous from the noncancerous regions, an overall cross-validation, a sensitivity and specificity of 88, 85.21 and 90.74%, respectively, was achieved. Additionally four distinctively overexpressed peaks were identified: 2,753 and 6,704 Da for non-cancerous glands, and 4,964 and 5,002 Da for cancerous glands. The results of this first clinical study utilizing the new technique of MALDI-Imaging underline its vast potential to identify candidates for more reliable prostate cancer tumor markers and to enlighten the pathogenesis of prostate cancer.
18F-deoxyglucose PET does not allow for metabolic labeling in the majority of untreated primary prostate cancers. BPH and primary prostate cancer cannot be reliably differentiated on the basis of PET. Increased 18F-deoxyglucose accumulation occurs in some primary prostate tumors and in metastatic deposits of prostate cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.