In the data mining era, the research field is paying attention to data stream mining, which offers a substantial influence on a variety of applications such as networking, wireless communications, education, economics, weather prediction, financial sector, and so on. Moreover, processing of this uncertain data stream faces two major challenges, which are computational difficulty and long processing time of data. Thus, to overcome this, this work proposes a technique that employs a deep belief neural network to categorize uncertain data streams. Initially, this work utilized a hybrid method that combines ensemble, grid, and density-dependent clustering approaches to acquire the local optimum value in uncertain data streams. Furthermore, for classification, a deep belief neural network (DBNN) has been used. As a result of mining, target semantics or chunks will be obtained from the classified data. The suggested technique performs well, and its effectiveness has been assessed in terms of time and accuracy. Thus, the proposed method outperforms the existing techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.