We consider a sequence space model of statistical linear inverse problems where we need to estimate a function f from indirect noisy observations. Let a nite set of linear estimators be given. Our aim is to mimic the estimator in that has the smallest risk on the true f. Under general conditions, we show that this can be achieved by simple minimization of unbiased risk estimator, provided the singular values of the operator of the inverse problem decrease as a power law. The main result is a nonasymptotic oracle inequality that is shown to be asymptotically exact. This inequality can be also used to obtain sharp minimax adaptive results. In particular, we apply it to show that minimax adaptation on ellipsoids in multivariate anisotropic case is realized by minimization of unbiased risk estimator without any loss of e ciency with respect to optimal non-adaptive procedures.
We consider the problem of estimation of a shift parameter of an unknown
symmetric function in Gaussian white noise. We introduce a notion of
semiparametric second-order efficiency and propose estimators that are
semiparametrically efficient and second-order efficient in our model. These
estimators are of a penalized maximum likelihood type with an appropriately
chosen penalty. We argue that second-order efficiency is crucial in
semiparametric problems since only the second-order terms in asymptotic
expansion for the risk account for the behavior of the ``nonparametric
component'' of a semiparametric procedure, and they are not dramatically
smaller than the first-order terms.Comment: Published at http://dx.doi.org/10.1214/009053605000000895 in the
Annals of Statistics (http://www.imstat.org/aos/) by the Institute of
Mathematical Statistics (http://www.imstat.org
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.