Weaver ants (Oecophylla spp.) are managed in plantations to control insect pests and are sometimes harvested as a protein‐rich food source. In both cases, the amount of insect prey caught by the ants is imperative for returns, as more prey leads to more effective biocontrol and to a higher production of ants. Malaise‐like traps placed in trees may catch flying insects without catching ants, as ants may use pheromone trails to navigate in and out of the traps. Thus, ants may increase their prey intake if they are able to extract insects caught in traps. In a mango plantation in Tanzania, we estimated the amount of insects caught by simple traps (cost per trap = 3.9 USD), and whether Oecophylla longinoda was able to collect insects from them. On average, a trap caught 110 insects per month without catching any weaver ants. The number of insects found in traps with ant access was 25% lower than in control traps (ants excluded), showing that ants were able to gather prey from the traps. Ant activity in traps increased over time, showing that prey extraction efficiency may increase as ants customize to the traps. The prey removed from traps by ants constituted 5% of the number of prey items collected by O. longinoda under natural conditions (without traps), potentially increasing to 14% if ants learn to extract all insects. Thus, prey intake may be increased with 5–14% per 3.9 USD invested in traps. These numbers increased to 38 and 78%, respectively, when light was used to attract insects during night time. Combining ant predation with insect trapping is a new approach potentially building increased returns to ant biocontrol and to ant entomophagy.
Weaver ants,Oecophyllaspp., are famous for being efficient biological control agents as they prey on a variety of insects, and they are capable of suppressing a large number of pest species. Here, the search rate and functional response ofOecophylla longinodawere investigated in a Tanzanian mango orchard using feeding experiments. This was done by following the removal of prey, which constituted the foundation for estimating the search rate by aid of the Nicholson-Bailey and Lotka-Volterra models. The overall mean search rate was3.2 ×10-4and1.7 ×10-4over 30 minutes, when calculating the search rate using the Nicholson-Bailey equation and the Lotka-Volterra equation (modified Holling equation), respectively. The functional response investigations showed a linear relationship between removed prey and available prey, suggesting type I functional response or, alternatively, the initial phase of type II functional response. The results presented here are probably the first attempt to identify the functional response type of a colony of living predatory eusocial insects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.