The effects of surface roughness and poroelasticity on the micropolar squeeze film behavior between rectangular plates in general and that of synovial joints in particular are presented in this paper. The modified Reynolds equation, which incorporates the randomized surface roughness structure as well as elastic nature of articular cartilage with micropolar fluid as lubricant, is derived. The load-carrying capacity and time of approach as functions of film thickness during normal articulation of joints are obtained by using Christensen stochastic theory for rough surfaces with the assumption that the roughness asperity heights are to be small compared to the film thickness. It is observed that the effect of surface roughness has considerable effects on lubrication mechanism of synovial joints.
The effect of anisotropic permeability on micropolar squeeze film lubrication between poroelastic rectangular plates is studied. The non-Newtonian synovial fluid is modelled by Eringen's micropolar fluid, and the poroelastic nature of cartilage is taken in to account. The stochastic modified Reynolds equation, which incorporates the elastic as well as randomised surface roughness structure of cartilage with micropolar fluid as lubricant, is derived. Modified equations for the mean fluid film pressure, mean load carrying capacity and squeeze film time are obtained using the Christensen's stochastic theory for the study of roughness effects. The effects of surface roughness, micropolar fluid and anisotropic permeability on the squeeze film characteristics of synovial joint are discussed. It is found that the surface roughness effects are more pronounced for micropolar fluids as compared to the Newtonian fluids, and the anisotropic nature of permeability of cartilage off-squares the plate size for optimum performance.
A simplified mathematical model has been developed for understanding the combined effects of surface roughness and couple stresses on the squeeze film behavior of poroelastic bearings in general and that of hip joints in particular. The cartilage is modeled as biphasic poroelastic matrix and synovial fluid is modeled as couple stress fluid. The modified form of averaged Reynolds equation which incorporates the randomized roughness structure as well as elastic nature of articular cartilage with couple stress fluid as lubricant is derived. For the study of rough surfaces, Christensen's stochastic theory is used to study the effect of two types of one-dimensional random roughness, namely, longitudinal roughness pattern and the transverse roughness pattern. The averaged film pressure distribution equations are solved numerically by using the conjugate gradient method. It is observed that the surface roughness effect is dominant and pattern dependent and the influence of couple stresses is to improve the joint performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.