We discuss the performances of highly sensitive magnetometers using flux gates, as well as magnetotransport effects (magnetoresistance-AMRGMR and magnetoimpedance-GMI). Soft magnetic materials operating at room temperature or cryogenic temperatures are involved in these effects. We report on their performances (sensitivity, bandwidth, etc.) with emphasis on their noise properties. The latter often fall to 1 -10 pT/dHz even for active areas as low as 1 -2 mm2. Amorphous magnetic flux guides are often used to enhance the field sensitivity of micro-devices. Their replacement by superconducting concentrators, which could lead to much larger gain factors, is discussed. This review, together with new results, confirms a new research field which could lead to highly sensitive, low noise, superconducting-magnetic hybrid magnetometers.
The Alpha Magnetic Spectrometer (AMS) is a particle physics experiment for use on the International Space Station (ISS). At the heart of the detector will be a large superconducting magnet cooled to a temperature of 1.8 K by 2500 litres of superfluid helium. The magnet and cryogenic system are currently under construction by Space Cryomagnetics Ltd of Culham, England. This paper describes the cryogenic system for the magnet, designed for the unusual challenges of operating a superconducting system in space. Results from experiments demonstrating some of the new techniques and devices developed for the magnet cryogenics are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.